Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1995, Volume 83, Issue 2, Pages 469–481
DOI: https://doi.org/10.1070/SM1995v083n02ABEH003601
(Mi sm946)
 

This article is cited in 26 scientific papers (total in 26 papers)

Polynomial integrals of geodesic flows on a two-dimensional torus

V. V. Kozlov, N. V. Denisova

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The geodesic curves of a Riemannian metric on a surface are described by a Hamiltonian system with two degrees of freedom whose Hamiltonian is quadratic in the momenta. Because of the homogeneity, every integral of the geodesic problem is a function of integrals that are polynomial in the momenta. The geodesic flow on a surface of genus greater than one does not admit an additional nonconstant integral at all, but on the other hand there are numerous examples of metrics on a torus whose geodesic flows are completely integrable: there are polynomial integrals of degree $\leqslant2$ that are independent of the Hamiltonian. It appears that the degree of an additional 'irreducible' polynomial integral of a geodesic flow on a torus cannot exceed two. In the present paper this conjecture is proved for metrics which can arbitrarily closely approximate any metric on a two-dimensional torus.
Received: 07.04.1994
Bibliographic databases:
Document Type: Article
UDC: 517.9+531.01
MSC: Primary 58F17, 58F05; Secondary 70M05, 15A24, 05A19
Language: English
Original paper language: Russian
Citation: V. V. Kozlov, N. V. Denisova, “Polynomial integrals of geodesic flows on a two-dimensional torus”, Russian Acad. Sci. Sb. Math., 83:2 (1995), 469–481
Citation in format AMSBIB
\Bibitem{KozDen94}
\by V.~V.~Kozlov, N.~V.~Denisova
\paper Polynomial integrals of geodesic flows on a~two-dimensional torus
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 83
\issue 2
\pages 469--481
\mathnet{http://mi.mathnet.ru//eng/sm946}
\crossref{https://doi.org/10.1070/SM1995v083n02ABEH003601}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1317298}
\zmath{https://zbmath.org/?q=an:0841.53039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TQ10300011}
Linking options:
  • https://www.mathnet.ru/eng/sm946
  • https://doi.org/10.1070/SM1995v083n02ABEH003601
  • https://www.mathnet.ru/eng/sm/v185/i12/p49
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024