Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 1, Pages 111–134
DOI: https://doi.org/10.1070/SM9413
(Mi sm9413)
 

This article is cited in 18 scientific papers (total in 18 papers)

Approximation of resolvents in homogenization of fourth-order elliptic operators

S. E. Pastukhova

MIREA — Russian Technological University, Moscow
References:
Abstract: We study the homogenization of a fourth-order divergent elliptic operator Aε with rapidly oscillating ε-periodic coefficients, where ε is a small parameter. The homogenized operator A0 is of the same type and has constant coefficients. We apply Zhikov's shift method to obtain an estimate in the (L2L2)-operator norm of order ε2 for the difference of the resolvents (Aε+1)1 and (A0+1)1.
Bibliography: 25 titles.
Keywords: approximation of resolvents, operator estimate of the homogenization error, corrector, shift method, fourth-order elliptic operator.
Received: 20.03.2020 and 17.04.2020
Bibliographic databases:
Document Type: Article
UDC: 517.956.8
MSC: Primary 35B27, 35J30, 47A10; Secondary 47F10
Language: English
Original paper language: Russian
Citation: S. E. Pastukhova, “Approximation of resolvents in homogenization of fourth-order elliptic operators”, Sb. Math., 212:1 (2021), 111–134
Citation in format AMSBIB
\Bibitem{Pas21}
\by S.~E.~Pastukhova
\paper Approximation of resolvents in homogenization of fourth-order elliptic operators
\jour Sb. Math.
\yr 2021
\vol 212
\issue 1
\pages 111--134
\mathnet{http://mi.mathnet.ru/eng/sm9413}
\crossref{https://doi.org/10.1070/SM9413}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223959}
\zmath{https://zbmath.org/?q=an:1465.35038}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212..111P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000627185500001}
\elib{https://elibrary.ru/item.asp?id=46826474}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103312224}
Linking options:
  • https://www.mathnet.ru/eng/sm9413
  • https://doi.org/10.1070/SM9413
  • https://www.mathnet.ru/eng/sm/v212/i1/p119
  • This publication is cited in the following 18 articles:
    1. S. E. Pastukhova, “Improved Homogenization Estimates for Higher-order Elliptic Operators in Energy Norms”, Lobachevskii J Math, 45:7 (2024), 3351  crossref
    2. D. I. Borisov, “Operator Estimates in Two-Dimensional Problems with a Frequent Alternation in the Case of Small Parts with the Dirichlet Condition”, Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S33–S52  mathnet  crossref  crossref  mathscinet  isi  elib
    3. S. E. Pastukhova, “On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems”, Math. Notes, 114:3 (2023), 322–338  mathnet  crossref  crossref  mathscinet
    4. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. A. A. Miloslova, T. A. Suslina, “Homogenization of the higher-order parabolic equations with periodic coefficients”, J. Math. Sci., 277:6 (2023), 959  crossref  mathscinet
    6. D. I. Borisov, “Homogenization for operators with arbitrary perturbations in coefficients”, Journal of Differential Equations, 369 (2023), 41  crossref  mathscinet  zmath
    7. D. I. Borisov, D. M. Polyakov, “Resolvent convergence for differential–difference operators with small variable translations”, Mathematics, 11:20 (2023), 4260  crossref
    8. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    9. A. Piatnitski, V. Sloushch, T. Suslina, E. Zhizhina, “On operator estimates in homogenization of nonlocal operators of convolution type”, Journal of Differential Equations, 352 (2023), 153  crossref
    10. S. E. Pastukhova, “On resolvent approximations of elliptic differential operators with periodic coefficients”, Appl. Anal., 101:13 (2022), 4453–4474  crossref  mathscinet  zmath  isi  scopus
    11. D. I. Borisov, “Norm resolvent convergence of elliptic operators in domains with thin spikes”, J. Math. Sci. (N.Y.), 261:3 (2022), 366–392  crossref  mathscinet  zmath
    12. D. I. Borisov, “Operator estimates for planar domains with irregularly curved boundary. The Dirichlet and Neumann conditions”, J. Math. Sci. (N.Y.), 264:5 (2022), 562–580  crossref  mathscinet  zmath
    13. S. E. Pastukhova, “Improved approximations of resolvents in homogenization of higher order operators. The selfadjoint case”, J. Math. Sci. (N.Y.), 262:3 (2022), 312–328  crossref  mathscinet  zmath
    14. D. I. Borisov, M. N. Konyrkulzhaeva, “Operator $L_2$ -estimates for two-dimensional problems with rapidly alternating boundary conditions”, J. Math. Sci. (N.Y.), 267:3 (2022), 319–337  crossref  mathscinet  zmath
    15. S. E. Pastukhova, “Improved $L^2$-approximation of resolvents in homogenization of fourth order operators”, St. Petersburg Math. J., 34:4 (2023), 611–634  mathnet  crossref  mathscinet
    16. A. A. Miloslova, T. A. Suslina, “Usrednenie parabolicheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 130–191  mathnet  crossref
    17. S. E. Pastukhova, “Improved approximations of resolvent in homogenization of higher order operators”, J. Math. Sci. (N.Y.), 259:2 (2021), 230–243  crossref  mathscinet  zmath
    18. S. E. Pastukhova, “Improved approximations of resolvents in homogenization of fourth order operators”, J. Math. Sci. (N.Y.), 255:4 (2021), 488–502  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:429
    Russian version PDF:73
    English version PDF:38
    Russian version HTML:151
    References:52
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025