Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 1, Pages 70–110
DOI: https://doi.org/10.1070/SM9445
(Mi sm9445)
 

This article is cited in 2 scientific papers (total in 2 papers)

Uniform convergence criterion for non-harmonic sine series

K. A. Oganesyanabcd

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
c Universitat Autònoma de Barcelona, Barcelona, Spain
d Centre de Recerca Matemàtica, Barcelona, Spain
References:
Abstract: We show that for a nonnegative monotonic sequence $\{c_k\}$ the condition $c_kk\to 0$ is sufficient for the series $\sum_{k=1}^{\infty}c_k\sin k^{\alpha} x$ to converge uniformly on any bounded set for $\alpha\in (0,2)$, and for any odd $\alpha$ it is sufficient for it to converge uniformly on the whole of $\mathbb{R}$. Moreover, the latter assertion still holds if we replace $k^{\alpha}$ by any polynomial in odd powers with rational coefficients. On the other hand, in the case of even $\alpha$ it is necessary that $\sum_{k=1}^{\infty}c_k<\infty$ for the above series to converge at the point $\pi/2$ or at $2\pi/3$. As a consequence, we obtain uniform convergence criteria. Furthermore, the results for natural numbers $\alpha$ remain true for sequences in the more general class $\mathrm{RBVS}$.
Bibliography: 17 titles.
Keywords: uniform convergence, sine series, monotone coefficients, fractional parts of the values of a polynomial, Weyl sums.
Funding agency Grant number
Foundation for the Development of Theoretical Physics and Mathematics BASIS 19-8-2-28-1
This research was carried out with the support of the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (grant no. 19-8-2-28-1).
Received: 11.05.2020 and 24.09.2020
Russian version:
Matematicheskii Sbornik, 2021, Volume 212, Number 1, Pages 78–118
DOI: https://doi.org/10.4213/sm9445
Bibliographic databases:
Document Type: Article
UDC: 517.521+511.36
MSC: Primary 42A20, 42A32; Secondary 11L15
Language: English
Original paper language: Russian
Citation: K. A. Oganesyan, “Uniform convergence criterion for non-harmonic sine series”, Mat. Sb., 212:1 (2021), 78–118; Sb. Math., 212:1 (2021), 70–110
Citation in format AMSBIB
\Bibitem{Oga21}
\by K.~A.~Oganesyan
\paper Uniform convergence criterion for non-harmonic sine series
\jour Mat. Sb.
\yr 2021
\vol 212
\issue 1
\pages 78--118
\mathnet{http://mi.mathnet.ru/sm9445}
\crossref{https://doi.org/10.4213/sm9445}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223958}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212...70O}
\elib{https://elibrary.ru/item.asp?id=46761757}
\transl
\jour Sb. Math.
\yr 2021
\vol 212
\issue 1
\pages 70--110
\crossref{https://doi.org/10.1070/SM9445}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000627186200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101953030}
Linking options:
  • https://www.mathnet.ru/eng/sm9445
  • https://doi.org/10.1070/SM9445
  • https://www.mathnet.ru/eng/sm/v212/i1/p78
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:429
    Russian version PDF:141
    English version PDF:22
    Russian version HTML:128
    References:41
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024