Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 6, Pages 875–899
DOI: https://doi.org/10.1070/SM9276
(Mi sm9276)
 

Three-webs $W(r,r,2)$

A. M. Shelekhov

Moscow Pedagogical State University, Moscow, Russia
References:
Abstract: Local differential-geometric properties of three-webs $W(r,r,2)$ formed on a $2r$-dimensional manifold by foliations of codimension $r,r$ and $2$, respectively, are considered. In particular, three-webs defined by complex analytic functions of $r$ complex arguments belong to this class of webs. The structure equations of a three-web $W(r,r,2)$ in an adapted co-frame (in particular, in a natural co-frame) are deduced; the canonical connection $\Gamma$ on the manifold of a web $W(r,r,2)$ is introduced; formulae are obtained to calculate (in a natural co-basis) the components of the first structure tensor of a three-web $W(r,r,2)$ in terms of the derivatives of the function of this web. Three special classes of three-webs $W(r,r,2)$ are considered in detail: regular and group three-webs and also three-webs $W(r,r,2)$ generated by holomorphic functions.
Bibliography: 17 titles.
Keywords: three-web $W(r,r,2)$, group three-web $W(r,r,2)$, regular three-web $W(r,r,2)$, three-web $\mathrm{CW}(r,r,2)$, canonical connection on a three-web $W(r,r,2)$.
Received: 04.05.2019
Bibliographic databases:
Document Type: Article
UDC: 514.763.7
MSC: Primary 53A60; Secondary 14C21
Language: English
Original paper language: Russian
Citation: A. M. Shelekhov, “Three-webs $W(r,r,2)$”, Sb. Math., 211:6 (2020), 875–899
Citation in format AMSBIB
\Bibitem{She20}
\by A.~M.~Shelekhov
\paper Three-webs $W(r,r,2)$
\jour Sb. Math.
\yr 2020
\vol 211
\issue 6
\pages 875--899
\mathnet{http://mi.mathnet.ru//eng/sm9276}
\crossref{https://doi.org/10.1070/SM9276}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4104778}
\zmath{https://zbmath.org/?q=an:1457.53008}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211..875S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000564138600001}
\elib{https://elibrary.ru/item.asp?id=45307033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090433708}
Linking options:
  • https://www.mathnet.ru/eng/sm9276
  • https://doi.org/10.1070/SM9276
  • https://www.mathnet.ru/eng/sm/v211/i6/p132
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:270
    Russian version PDF:39
    English version PDF:13
    References:37
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024