Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 6, Pages 786–837
DOI: https://doi.org/10.1070/SM9199
(Mi sm9199)
 

This article is cited in 5 scientific papers (total in 5 papers)

Sobolev $W^1_p$-spaces on $d$-thick closed subsets of $\mathbb R^n$

S. K. Vodopyanova, A. I. Tyulenevb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: Let $S\subset\mathbb R^n$ be a nonempty closed set such that for some $d\in[0,n]$ and $\varepsilon>0$ the $d$-Hausdorff content $\mathscr H^d_\infty(S\cap Q(x,r))\geqslant\varepsilon r^d$ for all cubes $Q(x,r)$ with centre $x\in S$ and edge length $2r\in(0,2]$. For each $p>\max\{1,n-d\}$ we give an intrinsic characterization of the trace space $W_p^1(\mathbb R^n)|_S$ of the Sobolev space $W_p^1(\mathbb R^n)$ to the set $S$. Furthermore, we prove the existence of a bounded linear operator $\operatorname{Ext}\colon W_p^1(\mathbb R^n)|_S\to W_p^1(\mathbb R^n)$ such that $\operatorname{Ext}$ is the right inverse to the standard trace operator. Our results extend those available in the case $p\in(1,n]$ for Ahlfors-regular sets $S$.
Bibliography: 36 titles.
Keywords: Sobolev spaces, Whitney problem, traces, extension operators.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0006
The research of S. K. Vodopyanov was carried out within the framework of a state assignment of the Ministry of Education and Science of the Russian Federation for the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences (project no. 0314-2019-0006).
Received: 27.11.2018 and 14.02.2020
Bibliographic databases:
Document Type: Article
UDC: 517.518
MSC: 46E35, 28A78, 28A25
Language: English
Original paper language: Russian
Citation: S. K. Vodopyanov, A. I. Tyulenev, “Sobolev $W^1_p$-spaces on $d$-thick closed subsets of $\mathbb R^n$”, Sb. Math., 211:6 (2020), 786–837
Citation in format AMSBIB
\Bibitem{VodTyu20}
\by S.~K.~Vodopyanov, A.~I.~Tyulenev
\paper Sobolev $W^1_p$-spaces on~$d$-thick closed subsets of $\mathbb R^n$
\jour Sb. Math.
\yr 2020
\vol 211
\issue 6
\pages 786--837
\mathnet{http://mi.mathnet.ru//eng/sm9199}
\crossref{https://doi.org/10.1070/SM9199}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4104775}
\zmath{https://zbmath.org/?q=an:1462.46044}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211..786V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000564139800001}
\elib{https://elibrary.ru/item.asp?id=45186168}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094592409}
Linking options:
  • https://www.mathnet.ru/eng/sm9199
  • https://doi.org/10.1070/SM9199
  • https://www.mathnet.ru/eng/sm/v211/i6/p40
  • Related presentations:
    This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:671
    Russian version PDF:116
    English version PDF:34
    References:64
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024