Abstract:
Let $S\subset\mathbb R^n$ be a nonempty closed set such that for some $d\in[0,n]$ and $\varepsilon>0$ the $d$-Hausdorff content $\mathscr H^d_\infty(S\cap Q(x,r))\geqslant\varepsilon r^d$ for all cubes $Q(x,r)$ with centre $x\in S$ and edge length $2r\in(0,2]$. For each $p>\max\{1,n-d\}$ we give an intrinsic characterization of the trace space $W_p^1(\mathbb R^n)|_S$ of the Sobolev space $W_p^1(\mathbb R^n)$ to the set $S$. Furthermore, we prove the existence of a bounded linear operator $\operatorname{Ext}\colon W_p^1(\mathbb R^n)|_S\to W_p^1(\mathbb R^n)$ such that $\operatorname{Ext}$ is the right inverse to the standard trace operator. Our results extend those available in the case $p\in(1,n]$ for Ahlfors-regular sets $S$.
Bibliography: 36 titles.
The research of S. K. Vodopyanov was carried out within the framework of a state assignment of the Ministry of Education and Science of the Russian Federation for the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences (project no. 0314-2019-0006).