Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 11, Pages 1612–1622
DOI: https://doi.org/10.1070/SM9268
(Mi sm9268)
 

Vanishing properties of $f$-minimal hypersurfaces in a complete smooth metric measure space

R. Mi

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, P. R. China
References:
Abstract: Let $(N^{n+1},g,e^{-f}dv)$ be a complete smooth metric measure space with $M^{n}$ being a complete noncompact $f$-minimal hypersurface in $N^{n+1}$. In this paper, we extend the classical vanishing theorems for $L^2$-harmonic $1$-forms on a complete minimal hypersurface to a weighted manifold. In addition, we obtain a vanishing result under the assumption that $M^n$ has sufficiently small weighted $L^n$-norm of the second fundamental form on $M^{n}$, which can be regarded as a generalization of a result by Yun and Seo.
Bibliography: 26 titles.
Received: 20.04.2019 and 07.07.2020
Russian version:
Matematicheskii Sbornik, 2020, Volume 211, Number 11, Pages 118–128
DOI: https://doi.org/10.4213/sm9268
Bibliographic databases:
Document Type: Article
UDC: 514.77
MSC: Primary 58C40; Secondary 53C42, 53C21
Language: English
Original paper language: Russian
Citation: R. Mi, “Vanishing properties of $f$-minimal hypersurfaces in a complete smooth metric measure space”, Mat. Sb., 211:11 (2020), 118–128; Sb. Math., 211:11 (2020), 1612–1622
Citation in format AMSBIB
\Bibitem{Mi20}
\by R.~Mi
\paper Vanishing properties of $f$-minimal hypersurfaces in a~complete smooth metric measure space
\jour Mat. Sb.
\yr 2020
\vol 211
\issue 11
\pages 118--128
\mathnet{http://mi.mathnet.ru/sm9268}
\crossref{https://doi.org/10.4213/sm9268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4169733}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211.1612M}
\transl
\jour Sb. Math.
\yr 2020
\vol 211
\issue 11
\pages 1612--1622
\crossref{https://doi.org/10.1070/SM9268}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000610541800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100415383}
Linking options:
  • https://www.mathnet.ru/eng/sm9268
  • https://doi.org/10.1070/SM9268
  • https://www.mathnet.ru/eng/sm/v211/i11/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:218
    Russian version PDF:17
    English version PDF:10
    References:26
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024