Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 11, Pages 1623–1659
DOI: https://doi.org/10.1070/SM9340
(Mi sm9340)
 

This article is cited in 20 scientific papers (total in 20 papers)

Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients

A. M. Savchukab, A. A. Shkalikovab

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
References:
Abstract: Ordinary differential equations of the form
$$ \tau(y)- \lambda ^{2m} \varrho(x) y=0, \qquad \tau(y) =\sum_{k,s=0}^m(\tau_{k,s}(x)y^{(m-k)}(x))^{(m-s)}, $$
on the finite interval $x\in[0,1]$ are under consideration. Here the functions $\tau_{0,0}$ and $\varrho$ are absolutely continuous and positive and the coefficients of the differential expression $\tau(y)$ are subject to the conditions
$$ \tau_{k,s}^{(-l)}\in L_2[0,1], \qquad 0\le k,s \le m, \quad l=\min\{k,s\}, $$
where $f^{(-k)}$ denotes the $k$th antiderivative of the function $f$ in the sense of distributions. Our purpose is to derive analogues of the classical asymptotic Birkhoff-type representations for the fundamental system of solutions of the above equation with respect to the spectral parameter as $\lambda \to \infty$ in certain sectors of the complex plane $\mathbb C$. We reduce this equation to a system of first-order equations of the form
$$ \mathbf y'=\lambda\rho(x)\mathrm B\mathbf y+\mathrm A(x)\mathbf y+\mathrm C(x,\lambda)\mathbf y, $$
where $\rho$ is a positive function, $\mathrm B$ is a matrix with constant elements, the elements of the matrices $\mathrm A(x)$ and $\mathrm C(x,\lambda)$ are integrable functions, and $\|\mathrm C(x,\lambda)\|_{L_1}=o(1)$ as $\lambda \to \infty$. For systems of this kind, we obtain new results concerning the asymptotic representation of the fundamental solution matrix, which we use to make an asymptotic analysis of the above scalar equations of high order.
Bibliography: 44 titles.
Keywords: differential equations with distribution coefficients, asymptotics with respect to the spectral parameter, Birkhoff asymptotics, spectral asymptotics.
Funding agency Grant number
Russian Science Foundation 20-11-20261
This study was supported by the Russian Science Foundation (project no. 20-11-20261).
Received: 23.10.2019 and 26.07.2020
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: Primary 34E05; Secondary 30E15
Language: English
Original paper language: Russian
Citation: A. M. Savchuk, A. A. Shkalikov, “Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients”, Sb. Math., 211:11 (2020), 1623–1659
Citation in format AMSBIB
\Bibitem{SavShk20}
\by A.~M.~Savchuk, A.~A.~Shkalikov
\paper Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients
\jour Sb. Math.
\yr 2020
\vol 211
\issue 11
\pages 1623--1659
\mathnet{http://mi.mathnet.ru//eng/sm9340}
\crossref{https://doi.org/10.1070/SM9340}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4169734}
\zmath{https://zbmath.org/?q=an:1477.34032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211.1623S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000610558400001}
\elib{https://elibrary.ru/item.asp?id=44958674}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100388663}
Linking options:
  • https://www.mathnet.ru/eng/sm9340
  • https://doi.org/10.1070/SM9340
  • https://www.mathnet.ru/eng/sm/v211/i11/p129
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024