Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 11, Pages 1644–1676
DOI: https://doi.org/10.1070/SM9009
(Mi sm9009)
 

This article is cited in 3 scientific papers (total in 3 papers)

Liouville classification of integrable geodesic flows in a potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle

D. S. Timonina

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
References:
Abstract: We study integrable geodesic flows on surfaces of revolution (the torus and the Klein bottle). We obtain a Liouville classification of integrable geodesic flows on the surfaces under consideration with potential in the case of a linear integral. Here, the potential is invariant under an isometric action of the circle on the manifold of revolution. This classification is obtained on the basis of calculating the Fomenko-Zieschang invariants (marked molecules) of the systems.
Bibliography: 18 titles.
Keywords: Hamiltonian system, Liouville equivalence, geodesic flow, marked molecule, Fomenko-Zieschang invariant.
Received: 08.09.2017 and 12.12.2017
Bibliographic databases:
Document Type: Article
UDC: 514.853
MSC: Primary 37J35; Secondary 37G10, 37J20
Language: English
Original paper language: Russian
Citation: D. S. Timonina, “Liouville classification of integrable geodesic flows in a potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle”, Sb. Math., 209:11 (2018), 1644–1676
Citation in format AMSBIB
\Bibitem{Tim18}
\by D.~S.~Timonina
\paper Liouville classification of integrable geodesic flows in a~potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle
\jour Sb. Math.
\yr 2018
\vol 209
\issue 11
\pages 1644--1676
\mathnet{http://mi.mathnet.ru//eng/sm9009}
\crossref{https://doi.org/10.1070/SM9009}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3871554}
\zmath{https://zbmath.org/?q=an:1408.37097}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209.1644T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000456414300005}
\elib{https://elibrary.ru/item.asp?id=36361384}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062821092}
Linking options:
  • https://www.mathnet.ru/eng/sm9009
  • https://doi.org/10.1070/SM9009
  • https://www.mathnet.ru/eng/sm/v209/i11/p103
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025