Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 11, Pages 1611–1643
DOI: https://doi.org/10.1070/SM8994
(Mi sm8994)
 

This article is cited in 1 scientific paper (total in 1 paper)

Shift dynamical systems and measurable selectors of multivalued maps

L. I. Danilov

Physical-Technical Institute, Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk
References:
Abstract: A condition is given for the existence of homomorphisms from compact invariant sets of shift dynamical systems of strongly measurable multivalued maps with values in a complete metric space to shift dynamical systems of strongly measurable selectors of these maps. We prove the existence of recurrent and almost automorphic selectors of Stepanov type, satisfying certain complementary conditions, for multivalued recurrent and almost automorphic Stepanov-type maps.
Bibliography: 35 items.
Keywords: shift dynamical systems, multivalued mapping, recurrent function.
Received: 20.07.2017 and 09.02.2018
Bibliographic databases:
Document Type: Article
UDC: 517.518.6
MSC: 47H04, 54H20
Language: English
Original paper language: Russian
Citation: L. I. Danilov, “Shift dynamical systems and measurable selectors of multivalued maps”, Sb. Math., 209:11 (2018), 1611–1643
Citation in format AMSBIB
\Bibitem{Dan18}
\by L.~I.~Danilov
\paper Shift dynamical systems and measurable selectors of multivalued maps
\jour Sb. Math.
\yr 2018
\vol 209
\issue 11
\pages 1611--1643
\mathnet{http://mi.mathnet.ru//eng/sm8994}
\crossref{https://doi.org/10.1070/SM8994}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3871553}
\zmath{https://zbmath.org/?q=an:1469.37013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209.1611D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000456414300004}
\elib{https://elibrary.ru/item.asp?id=36361381}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062863659}
Linking options:
  • https://www.mathnet.ru/eng/sm8994
  • https://doi.org/10.1070/SM8994
  • https://www.mathnet.ru/eng/sm/v209/i11/p69
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025