Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 4, Pages 473–494
DOI: https://doi.org/10.1070/SM9008
(Mi sm9008)
 

This article is cited in 2 scientific papers (total in 2 papers)

Eigenvalue asymptotics of long Kirchhoff plates with clamped edges

F. L. Bakharev, S. A. Nazarov

Faculty of Mathematics and Mechanics, St Petersburg State University, St Petersburg, Russia
References:
Abstract: Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-order ordinary differential equation, while for a T-junction of plates they are determined from another limiting problem in an infinite waveguide formed by three half-strips in the shape of a letter T and describing a boundary-layer phenomenon. Open questions are stated for which the method developed gives no answer.
Bibliography: 33 titles.
Keywords: Kirchhoff plate, eigenvalues and eigenfunctions, asymptotic behaviour, dimension reduction, boundary layer.
Funding agency Grant number
Russian Science Foundation 17-11-01003
This research was supported by the Russian Science Foundation (project no. 17-11-01003).
Received: 04.09.2017 and 02.02.2018
Bibliographic databases:
Document Type: Article
UDC: 517.956.8+517.956.227+517.958:539.3(5)
MSC: Primary 35P20, 74K30; Secondary 35Q74
Language: English
Original paper language: Russian
Citation: F. L. Bakharev, S. A. Nazarov, “Eigenvalue asymptotics of long Kirchhoff plates with clamped edges”, Sb. Math., 210:4 (2019), 473–494
Citation in format AMSBIB
\Bibitem{BakNaz19}
\by F.~L.~Bakharev, S.~A.~Nazarov
\paper Eigenvalue asymptotics of long Kirchhoff plates with clamped edges
\jour Sb. Math.
\yr 2019
\vol 210
\issue 4
\pages 473--494
\mathnet{http://mi.mathnet.ru/eng/sm9008}
\crossref{https://doi.org/10.1070/SM9008}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3942831}
\zmath{https://zbmath.org/?q=an:1417.35079}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..473B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471828000001}
\elib{https://elibrary.ru/item.asp?id=37180599}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071194595}
Linking options:
  • https://www.mathnet.ru/eng/sm9008
  • https://doi.org/10.1070/SM9008
  • https://www.mathnet.ru/eng/sm/v210/i4/p3
  • This publication is cited in the following 2 articles:
    1. O. V. Germider, V. N. Popov, “Matematicheskoe modelirovanie izgiba zaschemlennoi po konturu tonkoi ortotropnoi plastiny”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 20:3 (2024), 310–323  mathnet  crossref
    2. S. A. Nazarov, “Trapping of Waves in Semiinfinite Kirchhoff Plate with Periodically Damaged Edge”, J Math Sci, 257:5 (2021), 684  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:579
    Russian version PDF:58
    English version PDF:42
    References:75
    First page:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025