Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 12, Pages 1709–1728
DOI: https://doi.org/10.1070/SM8616
(Mi sm8616)
 

This article is cited in 4 scientific papers (total in 4 papers)

Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient

D. V. Kostin

Voronezh State University
References:
Abstract: Methods are given for the approximate calculation of a branch of a resonance oscillation when it bifurcates from a stationary point and for optimizing this branch with respect to the nonsymmetry coefficient, which is defined as the ratio between the largest and the smallest values of the amplitude. It is shown that the optimal values of the base amplitudes are the coefficients of the corresponding Fejér series. The largest value of the nonsymmetry coefficient is calculated exactly.
Bibliography: 18 titles.
Keywords: smooth functional, periodic extremal, bifurcation, nonsymmetry coefficient, Fejér trigonometric series, Lyapunov-Schmidt reduction.
Received: 09.10.2015 and 26.05.2016
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: 34A37, 34C23, 34C25
Language: English
Original paper language: Russian
Citation: D. V. Kostin, “Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient”, Sb. Math., 207:12 (2016), 1709–1728
Citation in format AMSBIB
\Bibitem{Kos16}
\by D.~V.~Kostin
\paper Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient
\jour Sb. Math.
\yr 2016
\vol 207
\issue 12
\pages 1709--1728
\mathnet{http://mi.mathnet.ru//eng/sm8616}
\crossref{https://doi.org/10.1070/SM8616}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588987}
\zmath{https://zbmath.org/?q=an:1364.34051}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1709K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394542200005}
\elib{https://elibrary.ru/item.asp?id=27485044}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014201194}
Linking options:
  • https://www.mathnet.ru/eng/sm8616
  • https://doi.org/10.1070/SM8616
  • https://www.mathnet.ru/eng/sm/v207/i12/p90
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024