|
This article is cited in 7 scientific papers (total in 7 papers)
On nonequivalence of the $\mathrm{C}$- and $\mathrm{QC}$-norms in the space of trigonometric polynomials
A. O. Radomskii Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Abstract:
A nontrivial lower bound for the quantity $\sup_{t\in L}\|t\|_{\mathrm{QC}}/\|t\|_{\infty}$ is obtained for a subspace $L$ of $ \mathrm{T}(2^{m}-1)$ which satisfies a certain dimension condition.
Bibliography: 8 titles.
Keywords:
trigonometric polynomials, Fejér kernels, Rademacher functions.
Received: 31.03.2016 and 24.04.2016
Citation:
A. O. Radomskii, “On nonequivalence of the $\mathrm{C}$- and $\mathrm{QC}$-norms in the space of trigonometric polynomials”, Sb. Math., 207:12 (2016), 1729–1742
Linking options:
https://www.mathnet.ru/eng/sm8707https://doi.org/10.1070/SM8707 https://www.mathnet.ru/eng/sm/v207/i12/p110
|
Statistics & downloads: |
Abstract page: | 645 | Russian version PDF: | 112 | English version PDF: | 40 | References: | 101 | First page: | 47 |
|