Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 7, Pages 923–949
DOI: https://doi.org/10.1070/SM2012v203n07ABEH004248
(Mi sm7876)
 

This article is cited in 53 scientific papers (total in 53 papers)

Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity

Ivan Arzhantseva, M. G. Zaidenbergb, K. G. Kuyumzhiyanc

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b University of Grenoble 1 — Joseph Fourier
c Laboratory of algebraic geometry and its applications, Higher School of Economics, Moscow
References:
Abstract: We say that a group $G$ acts infinitely transitively on a set $X$ if for every $m\in\mathbb N$ the induced diagonal action of $G$ is transitive on the cartesian $m$th power $X^m\setminus\Delta$ with the diagonals removed. We describe three classes of affine algebraic varieties such that their automorphism groups act infinitely transitively on their smooth loci. The first class consists of normal affine cones over flag varieties, the second of nondegenerate affine toric varieties, and the third of iterated suspensions over affine varieties with infinitely transitive automorphism groups.
Bibliography: 42 titles.
Keywords: affine algebraic variety, automorphism, infinite transitivity, derivation.
Received: 07.04.2011 and 24.01.2012
Bibliographic databases:
Document Type: Article
UDC: 512.745
MSC: 14R20, 14L30
Language: English
Original paper language: Russian
Citation: Ivan Arzhantsev, M. G. Zaidenberg, K. G. Kuyumzhiyan, “Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity”, Sb. Math., 203:7 (2012), 923–949
Citation in format AMSBIB
\Bibitem{ArzZaiKuy12}
\by Ivan~Arzhantsev, M.~G.~Zaidenberg, K.~G.~Kuyumzhiyan
\paper Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity
\jour Sb. Math.
\yr 2012
\vol 203
\issue 7
\pages 923--949
\mathnet{http://mi.mathnet.ru//eng/sm7876}
\crossref{https://doi.org/10.1070/SM2012v203n07ABEH004248}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2986429}
\zmath{https://zbmath.org/?q=an:06110258}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203..923A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000308704900001}
\elib{https://elibrary.ru/item.asp?id=19066522}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866265965}
Linking options:
  • https://www.mathnet.ru/eng/sm7876
  • https://doi.org/10.1070/SM2012v203n07ABEH004248
  • https://www.mathnet.ru/eng/sm/v203/i7/p3
  • This publication is cited in the following 53 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1224
    Russian version PDF:354
    English version PDF:33
    References:64
    First page:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024