Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 7, Pages 950–975
DOI: https://doi.org/10.1070/SM2012v203n07ABEH004249
(Mi sm7879)
 

This article is cited in 10 scientific papers (total in 10 papers)

The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities

G. G. Braichev

Moscow State Pedagogical University
References:
Abstract: The problem of the least type of entire functions of order $\rho\in(0,1)$ all of whose zeros lie on the same ray and have the prescribed upper and lower averaged $\rho$-densities is solved. A complete investigation of the value of the extremal type is carried out, including a description of its asymptotic behaviour.
Bibliography: 14 titles.
Keywords: extremal type of an entire function, upper and lower averaged density of zeros.
Received: 21.04.2011 and 05.02.2012
Russian version:
Matematicheskii Sbornik, 2012, Volume 203, Number 7, Pages 31–56
DOI: https://doi.org/10.4213/sm7879
Bibliographic databases:
Document Type: Article
UDC: 517.547.2
MSC: 30D15
Language: English
Original paper language: Russian
Citation: G. G. Braichev, “The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities”, Mat. Sb., 203:7 (2012), 31–56; Sb. Math., 203:7 (2012), 950–975
Citation in format AMSBIB
\Bibitem{Bra12}
\by G.~G.~Braichev
\paper The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities
\jour Mat. Sb.
\yr 2012
\vol 203
\issue 7
\pages 31--56
\mathnet{http://mi.mathnet.ru/sm7879}
\crossref{https://doi.org/10.4213/sm7879}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2986430}
\zmath{https://zbmath.org/?q=an:1260.30013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203..950B}
\elib{https://elibrary.ru/item.asp?id=19066526}
\transl
\jour Sb. Math.
\yr 2012
\vol 203
\issue 7
\pages 950--975
\crossref{https://doi.org/10.1070/SM2012v203n07ABEH004249}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000308704900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866283870}
Linking options:
  • https://www.mathnet.ru/eng/sm7879
  • https://doi.org/10.1070/SM2012v203n07ABEH004249
  • https://www.mathnet.ru/eng/sm/v203/i7/p31
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:598
    Russian version PDF:198
    English version PDF:17
    References:73
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024