Abstract:
The paper is concerned with an ordinary differential equation of the form
−ψ″(x)+(1+cx2)ψ(x)=1xα|ψ(x)|k−1ψ(x),x>0,
where k and α are positive parameters, k>1, and c is a constant,
subject to the boundary condition
ψ(0)=0,ψ(+∞)=0.
A variational approach based on finding the eigenvalues of the gradient of the functional
Fk,α(f)=∫+∞0|f(s)|k+1s−αds
acting on the space of absolutely continuous functions H10={f:f,f′∈L2(0,+∞),f(0)=0} is used to show that if c>−1/4, k>1, 0<2α<k+3, then problem
(1), (2) has a countable number of nonzero solutions, at least one of which is positive. For nonzero solutions, asymptotic formulae as x→0 and x→+∞ are obtained.
Bibliography: 7 titles.
Keywords:
differential equation, function space, weakly continuous functional, eigenfunction of the gradient of a functional.
Citation:
È. M. Muhamadiev, A. N. Naimov, “Nonzero bounded solutions of one class of nonlinear ordinary differential equations”, Sb. Math., 202:9 (2011), 1373–1386
\Bibitem{MuhNai11}
\by \`E.~M.~Muhamadiev, A.~N.~Naimov
\paper Nonzero bounded solutions of one class of~nonlinear ordinary differential equations
\jour Sb. Math.
\yr 2011
\vol 202
\issue 9
\pages 1373--1386
\mathnet{http://mi.mathnet.ru/eng/sm7714}
\crossref{https://doi.org/10.1070/SM2011v202n09ABEH004191}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2884367}
\zmath{https://zbmath.org/?q=an:1241.34033}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1373M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296920400006}
\elib{https://elibrary.ru/item.asp?id=19066307}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-81255142541}
Linking options:
https://www.mathnet.ru/eng/sm7714
https://doi.org/10.1070/SM2011v202n09ABEH004191
https://www.mathnet.ru/eng/sm/v202/i9/p121
This publication is cited in the following 1 articles:
È. M. Muhamadiev, A. N. Naimov, “Analysis of solutions of a nonlinear scalar field differential equation”, Theoret. and Math. Phys., 193:1 (2017), 1429–1443