Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 9, Pages 1387–1412
DOI: https://doi.org/10.1070/SM2011v202n09ABEH004192
(Mi sm7793)
 

This article is cited in 3 scientific papers (total in 3 papers)

Several versions of the compensated compactness principle

S. E. Pastukhovaa, A. S. Khripunovab

a Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
b Vladimir State Humanitarian University
References:
Abstract: The convergence of the product of a solenoidal vector $w_\varepsilon$ and a gradient $\nabla u_\varepsilon$ in $L^1(\Omega)$ (where $\Omega$ is a region in $\mathbb R^d$) is investigated in the case when the factors converge weakly in the spaces $L^\gamma(\Omega)^d$ and $L^\alpha(\Omega)^d$, respectively, with $1/\gamma+1/\alpha>1$, which means that the main assumption of the classical $div$-$curl$ lemma fails. Nevertheless, the same convergence (in the sense of distributions in $\Omega$)
$$ \lim_{\varepsilon\to0}w_\varepsilon\cdot\nabla u_\varepsilon =\lim_{\varepsilon\to0}w_\varepsilon\cdot\lim_{\varepsilon\to0} \nabla u_\varepsilon=w\cdot\nabla u $$
as in the framework of the $div$-$curl$ lemma, survives under certain additional assumptions.
The new versions of the compensated compactness principle proved in the paper can be used in homogenization and in the theory of $G$-convergence of monotone operators with non-standard coercivity and growth properties, for instance, some degenerate operators.
Bibliography: 20 titles.
Received: 29.09.2010 and 14.01.2011
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
MSC: Primary 46E40; Secondary 49J45
Language: English
Original paper language: Russian
Citation: S. E. Pastukhova, A. S. Khripunova, “Several versions of the compensated compactness principle”, Sb. Math., 202:9 (2011), 1387–1412
Citation in format AMSBIB
\Bibitem{PasKhr11}
\by S.~E.~Pastukhova, A.~S.~Khripunova
\paper Several versions of the compensated compactness principle
\jour Sb. Math.
\yr 2011
\vol 202
\issue 9
\pages 1387--1412
\mathnet{http://mi.mathnet.ru//eng/sm7793}
\crossref{https://doi.org/10.1070/SM2011v202n09ABEH004192}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2884368}
\zmath{https://zbmath.org/?q=an:1246.46027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1387P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296920400007}
\elib{https://elibrary.ru/item.asp?id=19066308}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79961029425}
Linking options:
  • https://www.mathnet.ru/eng/sm7793
  • https://doi.org/10.1070/SM2011v202n09ABEH004192
  • https://www.mathnet.ru/eng/sm/v202/i9/p135
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:625
    Russian version PDF:221
    English version PDF:24
    References:87
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024