Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 7, Pages 1059–1069
DOI: https://doi.org/10.1070/SM2011v202n07ABEH004177
(Mi sm7711)
 

This article is cited in 19 scientific papers (total in 19 papers)

Curvature and Tachibana numbers

S. E. Stepanov

Finance Academy under the Government of the Russian Federation
References:
Abstract: The aim of this paper is to define the rth Tachibana number tr of an n-dimensional compact oriented Riemannian manifold as the dimension of the space of conformally Killing r-forms, for r=1,2,,n1. We also describe properties of these numbers, by analogy with properties of the Betti numbers br of a compact oriented Riemannian manifold.
Bibliography: 25 titles.
Keywords: compact Riemannian manifold, differential forms, elliptic operator, scalar invariants.
Received: 13.03.2010 and 12.12.2010
Bibliographic databases:
Document Type: Article
UDC: 514.762.212
MSC: 53C21, 58A10
Language: English
Original paper language: Russian
Citation: S. E. Stepanov, “Curvature and Tachibana numbers”, Sb. Math., 202:7 (2011), 1059–1069
Citation in format AMSBIB
\Bibitem{Ste11}
\by S.~E.~Stepanov
\paper Curvature and Tachibana numbers
\jour Sb. Math.
\yr 2011
\vol 202
\issue 7
\pages 1059--1069
\mathnet{http://mi.mathnet.ru/eng/sm7711}
\crossref{https://doi.org/10.1070/SM2011v202n07ABEH004177}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2857797}
\zmath{https://zbmath.org/?q=an:1239.53058}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1059S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294777500006}
\elib{https://elibrary.ru/item.asp?id=19066293}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052746697}
Linking options:
  • https://www.mathnet.ru/eng/sm7711
  • https://doi.org/10.1070/SM2011v202n07ABEH004177
  • https://www.mathnet.ru/eng/sm/v202/i7/p135
  • This publication is cited in the following 19 articles:
    1. Mikes J., Rovenski V., Stepanov S., Tsyganok I., “Application of the Generalized Bochner Technique to the Study of Conformally Flat Riemannian Manifolds”, Mathematics, 9:9 (2021), 927  crossref  isi
    2. Rovenski V., Stepanov S., Tsyganok I., “The Sampson Laplacian on Negatively Pinched Riemannian Manifolds”, Int. Electron. J. Geom., 14:1 (2021), 91–99  crossref  mathscinet  isi
    3. Rovenski V., Stepanov S., Tsyganok I., “On the Betti and Tachibana Numbers of Compact Einstein Manifolds”, Mathematics, 7:12 (2019), 1210  crossref  isi  scopus
    4. Stepanov S., Tsyganok I., “Conformal Killing l-2-Forms on Complete Riemannian Manifolds With Nonpositive Curvature Operator”, J. Math. Anal. Appl., 458:1 (2018), 1–8  crossref  mathscinet  zmath  isi  scopus
    5. S. E. Stepanov, I. I. Tsyganok, T. V. Dmitrieva, “Harmonic and conformally Killing forms on complete Riemannian manifold”, Russian Math. (Iz. VUZ), 61:3 (2017), 44–48  mathnet  crossref  isi
    6. Irina Alexandrova, Irina Alexandrova, Sergey Stepanov, Sergey Stepanov, Irina Tsyganok, Irina Tsyganok, “EXTERIOR DIFFERENTIAL FORMS ON RIEMANNIAN SYMMETRIC SPACES”, Science Evolution, 2017, 49  crossref
    7. S. E. Stepanov, J. Mikeš, “The Hodge–de Rham Laplacian and Tachibana operator on a compact Riemannian manifold with curvature operator of definite sign”, Izv. Math., 79:2 (2015), 375–387  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. Stepanov S.E., Tsyganok I.I., Mikes J., “Overview and comparative analysis of the properties of the Hodge-de Rham and Tachibana operators”, Filomat, 29:10 (2015), 2429–2436  crossref  mathscinet  zmath  isi  scopus
    9. S. E. Stepanov, I. I. Tsyganok, “Comparative Analysis of Spectral Properties of the Hodge–De Rham and Tachibana Operators”, J Math Sci, 207:4 (2015), 614  crossref
    10. S. E. Stepanov, I. A. Alexandrova, I. I. Tsyganok, J. Mikeš, “Conformal Killing forms on totally umbilical submanifolds”, Journal of Mathematical Sciences, 217:5 (2016), 525–539  mathnet  mathnet  crossref
    11. S. E. Stepanov, J. Marek, J. Mikeš, “Vanishing theorems of conformal Killing forms and their applications to electrodynamics in the general relativity theory”, Int. J. Geom. Methods Mod. Phys., 11:9 (2014), 1450039, 8 pp.  crossref  mathscinet  zmath  isi  elib  scopus
    12. S. E. Stepanov, “Betti and Tachibana Numbers”, Math. Notes, 95:6 (2014), 856–864  mathnet  crossref  crossref  mathscinet  isi  elib
    13. S. E. Stepanov, I. I. Tsyganok, “Theorems of existence and non-existence of conformal Killing forms”, Russian Math. (Iz. VUZ), 58:10 (2014), 46–51  mathnet  crossref
    14. S. E. Stepanov, M. Jukl, J. Mikeš, “On dimensions of vector spaces of conformal killing forms”, Algebra, Geometry and Mathematical Physics, Springer Proceedings in Mathematics & Statistics, 85, Springer, 2014, 495–507  crossref  mathscinet  zmath  isi  scopus
    15. S. E. Stepanov, J. Mikeš, “Eigenvalues of the Tachibana operator which acts on differential forms”, Differential Geom. Appl., 35, suppl. (2014), 19–25  crossref  mathscinet  zmath  isi  elib  scopus
    16. S. E. Stepanov, J. Mikeš, “Betti and Tachibana numbers of compact Riemannian manifolds”, Differential Geom. Appl., 31:4 (2013), 486–495  crossref  mathscinet  zmath  isi  elib  scopus
    17. S. E. Stepanov, J. Mikeš, “Betti and Tachibana numbers”, Miskolc Math. Notes, 14:2 (2013), 475–486  crossref  mathscinet  zmath  isi  elib
    18. Stepanov S.E., Mikesh I., Tsyganok I.I., “Operator tachibany”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiz.-mat. nauki, 2013, 82–92  elib
    19. S. E. Stepanov, I. Mikesh, I. I. Tsyganok, “Operator Tachibany”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2013, no. 4, 82–92  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:690
    Russian version PDF:224
    English version PDF:26
    References:102
    First page:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025