Abstract:
The aim of this paper is to define the rth Tachibana number tr of an n-dimensional compact oriented Riemannian manifold as the dimension of the space of conformally Killing r-forms, for r=1,2,…,n−1. We also describe properties of these numbers, by analogy with properties of the Betti numbers br of a compact oriented Riemannian manifold.
Bibliography: 25 titles.
This publication is cited in the following 19 articles:
Mikes J., Rovenski V., Stepanov S., Tsyganok I., “Application of the Generalized Bochner Technique to the Study of Conformally Flat Riemannian Manifolds”, Mathematics, 9:9 (2021), 927
Rovenski V., Stepanov S., Tsyganok I., “The Sampson Laplacian on Negatively Pinched Riemannian Manifolds”, Int. Electron. J. Geom., 14:1 (2021), 91–99
Rovenski V., Stepanov S., Tsyganok I., “On the Betti and Tachibana Numbers of Compact Einstein Manifolds”, Mathematics, 7:12 (2019), 1210
Stepanov S., Tsyganok I., “Conformal Killing l-2-Forms on Complete Riemannian Manifolds With Nonpositive Curvature Operator”, J. Math. Anal. Appl., 458:1 (2018), 1–8
S. E. Stepanov, I. I. Tsyganok, T. V. Dmitrieva, “Harmonic and conformally Killing forms on complete Riemannian manifold”, Russian Math. (Iz. VUZ), 61:3 (2017), 44–48
S. E. Stepanov, J. Mikeš, “The Hodge–de Rham Laplacian and Tachibana operator on a compact Riemannian
manifold with curvature operator of definite sign”, Izv. Math., 79:2 (2015), 375–387
Stepanov S.E., Tsyganok I.I., Mikes J., “Overview and comparative analysis of the properties of the Hodge-de Rham and Tachibana operators”, Filomat, 29:10 (2015), 2429–2436
S. E. Stepanov, I. I. Tsyganok, “Comparative Analysis of Spectral Properties of the Hodge–De Rham and Tachibana Operators”, J Math Sci, 207:4 (2015), 614
S. E. Stepanov, I. A. Alexandrova, I. I. Tsyganok, J. Mikeš, “Conformal Killing forms on totally umbilical submanifolds”, Journal of Mathematical Sciences, 217:5 (2016), 525–539
S. E. Stepanov, J. Marek, J. Mikeš, “Vanishing theorems of conformal Killing forms and their applications to electrodynamics in the general relativity theory”, Int. J. Geom. Methods Mod. Phys., 11:9 (2014), 1450039, 8 pp.
S. E. Stepanov, “Betti and Tachibana Numbers”, Math. Notes, 95:6 (2014), 856–864
S. E. Stepanov, I. I. Tsyganok, “Theorems of existence and non-existence of conformal Killing forms”, Russian Math. (Iz. VUZ), 58:10 (2014), 46–51
S. E. Stepanov, M. Jukl, J. Mikeš, “On dimensions of vector spaces of conformal killing forms”, Algebra, Geometry and Mathematical Physics, Springer Proceedings in Mathematics & Statistics, 85, Springer, 2014, 495–507
S. E. Stepanov, J. Mikeš, “Eigenvalues of the Tachibana operator which acts on differential forms”, Differential Geom. Appl., 35, suppl. (2014), 19–25
S. E. Stepanov, J. Mikeš, “Betti and Tachibana numbers of compact Riemannian manifolds”, Differential Geom. Appl., 31:4 (2013), 486–495
S. E. Stepanov, J. Mikeš, “Betti and Tachibana numbers”, Miskolc Math. Notes, 14:2 (2013), 475–486
S. E. Stepanov, I. Mikesh, I. I. Tsyganok, “Operator Tachibany”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2013, no. 4, 82–92