Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 7, Pages 1071–1083
DOI: https://doi.org/10.1070/SM2011v202n07ABEH004178
(Mi sm7674)
 

This article is cited in 4 scientific papers (total in 4 papers)

The inverse scattering problem for a discrete Sturm-Liouville equation on the line

A. Kh. Khanmamedovab

a Baku State University
b Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
References:
Abstract: This paper investigates the inverse scattering problem for a discrete Sturm-Liouville equation on the entire line with coefficients that stabilize to zero in one direction. We derive a necessary and a sufficient condition on the scattering data so that the inverse problem is uniquely solvable.
Bibliography: 23 titles.
Keywords: the inverse spectral problem, Jacobi operators, scattering problem, Weyl function.
Received: 24.12.2009 and 30.03.2011
Russian version:
Matematicheskii Sbornik, 2011, Volume 202, Number 7, Pages 147–160
DOI: https://doi.org/10.4213/sm7674
Bibliographic databases:
Document Type: Article
UDC: 517.984.64
MSC: 34L25, 81U40
Language: English
Original paper language: Russian
Citation: A. Kh. Khanmamedov, “The inverse scattering problem for a discrete Sturm-Liouville equation on the line”, Mat. Sb., 202:7 (2011), 147–160; Sb. Math., 202:7 (2011), 1071–1083
Citation in format AMSBIB
\Bibitem{Kha11}
\by A.~Kh.~Khanmamedov
\paper The inverse scattering problem for a~discrete Sturm-Liouville equation on the line
\jour Mat. Sb.
\yr 2011
\vol 202
\issue 7
\pages 147--160
\mathnet{http://mi.mathnet.ru/sm7674}
\crossref{https://doi.org/10.4213/sm7674}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2857798}
\zmath{https://zbmath.org/?q=an:1245.39006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1071K}
\elib{https://elibrary.ru/item.asp?id=19066294}
\transl
\jour Sb. Math.
\yr 2011
\vol 202
\issue 7
\pages 1071--1083
\crossref{https://doi.org/10.1070/SM2011v202n07ABEH004178}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294777500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052722038}
Linking options:
  • https://www.mathnet.ru/eng/sm7674
  • https://doi.org/10.1070/SM2011v202n07ABEH004178
  • https://www.mathnet.ru/eng/sm/v202/i7/p147
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:680
    Russian version PDF:261
    English version PDF:22
    References:92
    First page:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024