Abstract:
This paper investigates the inverse scattering problem for a discrete Sturm-Liouville equation on the entire line with coefficients that stabilize to zero in one direction. We derive a necessary and a sufficient condition
on the scattering data so that the inverse problem is uniquely solvable.
Bibliography: 23 titles.
\Bibitem{Kha11}
\by A.~Kh.~Khanmamedov
\paper The inverse scattering problem for a~discrete Sturm-Liouville equation on the line
\jour Sb. Math.
\yr 2011
\vol 202
\issue 7
\pages 1071--1083
\mathnet{http://mi.mathnet.ru/eng/sm7674}
\crossref{https://doi.org/10.1070/SM2011v202n07ABEH004178}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2857798}
\zmath{https://zbmath.org/?q=an:1245.39006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1071K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294777500007}
\elib{https://elibrary.ru/item.asp?id=19066294}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052722038}
Linking options:
https://www.mathnet.ru/eng/sm7674
https://doi.org/10.1070/SM2011v202n07ABEH004178
https://www.mathnet.ru/eng/sm/v202/i7/p147
This publication is cited in the following 4 articles:
Manafov M.D., Kablan A., Bala B., “Parseval Equality of Discrete Sturm-Liouville Equation With Periodic Generalized Function Potentials”, AIP Conference Proceedings, 1991, eds. Sarikaya M., Akdemir A., Set E., Ekinci A., Amer Inst Physics, 2018, 020023
Huseynov H.M., Khanmamedov A.K., Aleskerov R.I., “The Inverse Scattering Problem For a Discrete Dirac System on the Whole Axis”, J. Inverse Ill-Posed Probl., 25:6 (2017), 829–834
Khanmamedov Ag.Kh., Asadova L.K., “Integration of Toda lattices with steplike initial data”, Dokl. Math., 87:1 (2013), 36–38
Masjed-Jamei M., Area I., “A Symmetric Generalization of Sturm-Liouville Problems in Discrete Spaces”, J. Differ. Equ. Appl., 19:9 (2013), 1544–1562