Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 7, Pages 1001–1020
DOI: https://doi.org/10.1070/SM2011v202n07ABEH004174
(Mi sm7814)
 

This article is cited in 15 scientific papers (total in 15 papers)

Solvability of the Dirichlet problem for a general second-order elliptic equation

V. Zh. Dumanyan

Yerevan State University
References:
Abstract: The paper is concerned with studying the solvability of the Dirichlet problem for the second-order elliptic equation
\begin{gather*} \begin{split} & -\operatorname{div} (A(x)\nabla u)+(\overline b(x),\nabla u)-\operatorname{div} (\overline c(x)u)+d(x)u \\ &\qquad=f(x)-\operatorname{div} F(x), \qquad x\in Q, \end{split} \\ u\big|_{\partial Q}=u_0, \end{gather*}
in a bounded domain $Q\subset R_n$, $n\geqslant 2$, with $C^1$-smooth boundary and boundary condition $u_0\in L_2(\partial Q)$.
Conditions for the existence of an $(n-1)$-dimensionally continuous solution are obtained, the resulting solvability condition is shown to be similar in form to the solvability condition in the conventional generalized setting (in $W_2^1(Q)$). In particular, the problem is shown to have an $(n-1)$-dimensionally continuous solution for all $u_0\in L_2(\partial Q)$ and all $f$ and $F$ from the appropriate function spaces, provided that the homogeneous problem (with zero boundary conditions and zero right-hand side) has no nonzero solutions in $W_2^1(Q)$.
Bibliography: 14 titles.
Keywords: Dirichlet problem, solvability of the Dirichlet problem, second-order elliptic equation, $(n-1)$-dimensionally continuous solution.
Received: 08.11.2010
Bibliographic databases:
Document Type: Article
UDC: 517.956
MSC: 35J15
Language: English
Original paper language: Russian
Citation: V. Zh. Dumanyan, “Solvability of the Dirichlet problem for a general second-order elliptic equation”, Sb. Math., 202:7 (2011), 1001–1020
Citation in format AMSBIB
\Bibitem{Dum11}
\by V.~Zh.~Dumanyan
\paper Solvability of the Dirichlet problem for a~general second-order elliptic equation
\jour Sb. Math.
\yr 2011
\vol 202
\issue 7
\pages 1001--1020
\mathnet{http://mi.mathnet.ru//eng/sm7814}
\crossref{https://doi.org/10.1070/SM2011v202n07ABEH004174}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2857794}
\zmath{https://zbmath.org/?q=an:1237.35040}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1001D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294777500003}
\elib{https://elibrary.ru/item.asp?id=19066290}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052718182}
Linking options:
  • https://www.mathnet.ru/eng/sm7814
  • https://doi.org/10.1070/SM2011v202n07ABEH004174
  • https://www.mathnet.ru/eng/sm/v202/i7/p75
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:676
    Russian version PDF:203
    English version PDF:18
    References:75
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024