Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 4, Pages 501–567
DOI: https://doi.org/10.1070/SM2010v201n04ABEH004081
(Mi sm7557)
 

This article is cited in 9 scientific papers (total in 9 papers)

Framed Morse functions on surfaces

E. A. Kudryavtseva, D. A. Permyakov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Let $M$ be a smooth, compact, not necessarily orientable surface with (maybe empty) boundary, and let $F$ be the space of Morse functions on $M$ that are constant on each component of the boundary and have no critical points at the boundary. The notion of framing is defined for a Morse function $f\in F$. In the case of an orientable surface $M$ this is a closed 1-form $\alpha$ on $M$ with punctures at the critical points of local minimum and maximum of $f$ such that in a neighbourhood of each critical point the pair $(f,\alpha)$ has a canonical form in a suitable local coordinate chart and the 2-form $df\wedge\alpha$ does not vanish on $M$ punctured at the critical points and defines there a positive orientation. Each Morse function on $M$ is shown to have a framing, and the space $F$ endowed with the $C^\infty$-topology is homotopy equivalent to the space $\mathbb F$ of framed Morse functions. The results obtained make it possible to reduce the problem of describing the homotopy type of $F$ to the simpler problem of finding the homotopy type of $\mathbb F$. As a solution of the latter, an analogue of the parametric $h$-principle is stated for the space $\mathbb F$.
Bibliography: 41 titles.
Keywords: Morse functions, framed Morse functions, equivalence of functions, compact surface, $C^\infty$-topology.
Received: 18.03.2009 and 02.07.2009
Bibliographic databases:
UDC: 515.164.174+515.164.22+515.122.55
MSC: 57R45, 58D15
Language: English
Original paper language: Russian
Citation: E. A. Kudryavtseva, D. A. Permyakov, “Framed Morse functions on surfaces”, Sb. Math., 201:4 (2010), 501–567
Citation in format AMSBIB
\Bibitem{KudPer10}
\by E.~A.~Kudryavtseva, D.~A.~Permyakov
\paper Framed Morse functions on surfaces
\jour Sb. Math.
\yr 2010
\vol 201
\issue 4
\pages 501--567
\mathnet{http://mi.mathnet.ru//eng/sm7557}
\crossref{https://doi.org/10.1070/SM2010v201n04ABEH004081}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2675341}
\zmath{https://zbmath.org/?q=an:1197.57027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..501K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279452200008}
\elib{https://elibrary.ru/item.asp?id=19066196}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954811986}
Linking options:
  • https://www.mathnet.ru/eng/sm7557
  • https://doi.org/10.1070/SM2010v201n04ABEH004081
  • https://www.mathnet.ru/eng/sm/v201/i4/p33
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024