Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 9, Pages 1323–1353
DOI: https://doi.org/10.1070/SM2010v201n09ABEH004114
(Mi sm7581)
 

This article is cited in 10 scientific papers (total in 10 papers)

Splitting fields and general differential Galois theory

D. V. Trushin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: An algebraic technique is presented that does not use results of model theory and makes it possible to construct a general Galois theory of arbitrary nonlinear systems of partial differential equations. The algebraic technique is based on the search for prime differential ideals of special form in tensor products of differential rings. The main results demonstrating the work of the technique obtained are the theorem on the constructedness of the differential closure and the general theorem on the Galois correspondence for normal extensions.
Bibliography: 14 titles.
Keywords: tensor products, constructed fields, differential closure, splitting field, differential Galois group.
Received: 22.05.2009 and 07.01.2010
Bibliographic databases:
Document Type: Article
UDC: 512.628.2
MSC: Primary 12H05; Secondary 03C60, 12H10
Language: English
Original paper language: Russian
Citation: D. V. Trushin, “Splitting fields and general differential Galois theory”, Sb. Math., 201:9 (2010), 1323–1353
Citation in format AMSBIB
\Bibitem{Tru10}
\by D.~V.~Trushin
\paper Splitting fields and general differential Galois theory
\jour Sb. Math.
\yr 2010
\vol 201
\issue 9
\pages 1323--1353
\mathnet{http://mi.mathnet.ru/eng/sm7581}
\crossref{https://doi.org/10.1070/SM2010v201n09ABEH004114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760461}
\zmath{https://zbmath.org/?q=an:1226.12005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201.1323T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000285190100004}
\elib{https://elibrary.ru/item.asp?id=19066231}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78649582347}
Linking options:
  • https://www.mathnet.ru/eng/sm7581
  • https://doi.org/10.1070/SM2010v201n09ABEH004114
  • https://www.mathnet.ru/eng/sm/v201/i9/p77
  • This publication is cited in the following 10 articles:
    1. Arreche C.E., Zhang Y., “Computing Differential Galois Groups of Second-Order Linear Q-Difference Equations”, Adv. Appl. Math., 132 (2022), 102273  crossref  mathscinet  isi
    2. Lucia Di Vizio, “Action of an endomorphism on (the solutions of) a linear differential equation”, Publications mathématiques de Besançon. Algèbre et théorie des nombres, 2019, no. 1, 21  crossref
    3. Arreche C.E., “Computation of the Difference-Differential Galois Group and Differential Relations Among Solutions For a Second-Order Linear Difference Equation”, Commun. Contemp. Math., 19:6 (2017), 1650056  crossref  mathscinet  zmath  isi  scopus
    4. Arreche C.E., “On the computation of the parameterized differential Galois group for a second-order linear differential equation with differential parameters”, J. Symbolic Comput., 75:SI (2016), 25–55  crossref  mathscinet  zmath  isi  scopus
    5. A. Minchenko, A. Ovchinnikov, M. F. Singer, “Unipotent differential algebraic groups as parameterized differential Galois groups”, J. Inst. Math. Jussieu, 13:4 (2014), 671–700  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    6. C. E. Arreche, “Computation of the unipotent radical of the differential Galois group for a parameterized second-order linear differential equation”, Adv. in Appl. Math., 57 (2014), 44–59  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    7. Minchenko A., Ovchinnikov A., “Extensions of differential representations of $\mathbf{SL}_2$ and tori”, J. Inst. Math. Jussieu, 12:1 (2013), 199–224  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    8. H. Gillet, S. Gorchinskiy, A. Ovchinnikov, “Parameterized Picard–Vessiot extensions and Atiyah extensions”, Adv. in Math., 238 (2013), 322–411  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    9. C. E. Arreche, “A Galois-theoretic proof of the differential transcendence of the incomplete Gamma function”, J. Algebra, 389 (2013), 119–127  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    10. Mariya Bessonov, Alexey Ovchinnikov, Maxwell Shapiro, Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, 2013, 45  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:665
    Russian version PDF:324
    English version PDF:38
    References:65
    First page:19
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025