Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 9, Pages 1307–1322
DOI: https://doi.org/10.1070/SM2010v201n09ABEH004113
(Mi sm7598)
 

This article is cited in 19 scientific papers (total in 19 papers)

Equiconvergence of eigenfunction expansions for Sturm-Liouville operators with a distributional potential

I. V. Sadovnichaya

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
References:
Abstract: The Sturm-Liouville operator $L=-d^2/dx^2+q(x)$ in the space $L_2[0,\pi]$ under Dirichlet boundary conditions is investigated. It is assumed that $q(x)=u'(x)$, $u(x)\in L_2[0,\pi]$ (here, differentiation is used in the distributional sense). The problem of when the expansion of a function $f(x)$ in terms of a series of eigenfunctions and associated functions of the operator $L$ is uniformly equiconvergent on the whole of the interval $[0,\pi]$ with its Fourier sine series expansion is considered. It is shown that such uniform convergence holds for any function $f(x)$ in the space $L_2[0,\pi]$.
Bibliography: 22 titles.
Keywords: Sturm-Liouville operator, singular potential, uniform equiconvergence.
Received: 25.06.2009 and 17.03.2010
Russian version:
Matematicheskii Sbornik, 2010, Volume 201, Number 9, Pages 61–76
DOI: https://doi.org/10.4213/sm7598
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: Primary 34L10; Secondary 42A20
Language: English
Original paper language: Russian
Citation: I. V. Sadovnichaya, “Equiconvergence of eigenfunction expansions for Sturm-Liouville operators with a distributional potential”, Mat. Sb., 201:9 (2010), 61–76; Sb. Math., 201:9 (2010), 1307–1322
Citation in format AMSBIB
\Bibitem{Sad10}
\by I.~V.~Sadovnichaya
\paper Equiconvergence of eigenfunction expansions for Sturm-Liouville operators with a distributional potential
\jour Mat. Sb.
\yr 2010
\vol 201
\issue 9
\pages 61--76
\mathnet{http://mi.mathnet.ru/sm7598}
\crossref{https://doi.org/10.4213/sm7598}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760460}
\zmath{https://zbmath.org/?q=an:1209.34108}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201.1307S}
\elib{https://elibrary.ru/item.asp?id=19066230}
\transl
\jour Sb. Math.
\yr 2010
\vol 201
\issue 9
\pages 1307--1322
\crossref{https://doi.org/10.1070/SM2010v201n09ABEH004113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000285190100003}
\elib{https://elibrary.ru/item.asp?id=16976988}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78649587372}
Linking options:
  • https://www.mathnet.ru/eng/sm7598
  • https://doi.org/10.1070/SM2010v201n09ABEH004113
  • https://www.mathnet.ru/eng/sm/v201/i9/p61
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:998
    Russian version PDF:251
    English version PDF:24
    References:88
    First page:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024