Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 4, Pages 575–587
DOI: https://doi.org/10.1070/SM2003v194n04ABEH000730
(Mi sm730)
 

This article is cited in 3 scientific papers (total in 3 papers)

The quantum chaos conjecture and generalized continued fractions

L. D. Pustyl'nikov

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
References:
Abstract: The proof of the quantum chaos conjecture is given for a class of systems including as a special case the model of a rotating particle under the action of periodic impulse perturbations. (The distribution of the distances between adjacent energy levels is close to the Poisson distribution and differs from it by terms of the third order of smallness.) The proof reduces to a result in number theory on the distribution of the distances between adjacent fractional parts of values of a polynomial, while the estimate of the remainder term is based on the new theory of generalized continued fractions for vectors.
Received: 13.12.2001 and 21.08.2002
Russian version:
Matematicheskii Sbornik, 2003, Volume 194, Number 4, Pages 107–118
DOI: https://doi.org/10.4213/sm730
Bibliographic databases:
UDC: 511.36+517
MSC: Primary 11J70, 81Q50; Secondary 11K50, 37A45
Language: English
Original paper language: Russian
Citation: L. D. Pustyl'nikov, “The quantum chaos conjecture and generalized continued fractions”, Mat. Sb., 194:4 (2003), 107–118; Sb. Math., 194:4 (2003), 575–587
Citation in format AMSBIB
\Bibitem{Pus03}
\by L.~D.~Pustyl'nikov
\paper The quantum chaos conjecture and generalized continued fractions
\jour Mat. Sb.
\yr 2003
\vol 194
\issue 4
\pages 107--118
\mathnet{http://mi.mathnet.ru/sm730}
\crossref{https://doi.org/10.4213/sm730}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992079}
\zmath{https://zbmath.org/?q=an:1091.81035}
\transl
\jour Sb. Math.
\yr 2003
\vol 194
\issue 4
\pages 575--587
\crossref{https://doi.org/10.1070/SM2003v194n04ABEH000730}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184089700013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0038166234}
Linking options:
  • https://www.mathnet.ru/eng/sm730
  • https://doi.org/10.1070/SM2003v194n04ABEH000730
  • https://www.mathnet.ru/eng/sm/v194/i4/p107
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:445
    Russian version PDF:242
    English version PDF:20
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024