Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 4, Pages 551–573
DOI: https://doi.org/10.1070/SM2003v194n04ABEH000729
(Mi sm729)
 

This article is cited in 2 scientific papers (total in 2 papers)

Transformation of measures in infinite-dimensional spaces by the flow induced by a stochastic differential equation

A. Yu. Pilipenko

Institute of Mathematics, Ukrainian National Academy of Sciences
References:
Abstract: Let $\mu$ be a Gaussian measure in the space $X$ and $H$ the Cameron–Martin space of the measure $\mu$. Consider the stochastic differential equation
\begin{gather*} d\xi(u,t)=a_t(\xi(u,t))\,dt+\sum_n\sigma^n_t(\xi(u,t))\,d\omega_n(t), \quad t\in[0,T], \\ \xi(u,0)=u, \end{gather*}
where $u\in X$, $a$ and $\sigma_n$ are functions taking values in $H$, $\omega_n(t)$, $n\geqslant 1$ are independent one-dimensional Wiener processes. Consider the measure-valued random process $\mu_t:=\mu\circ\xi(\,\cdot\,,t)^{-1}$. It is shown that under certain natural conditions on the coefficients of the initial equation the measures $\mu_t(\omega)$ are equivalent to $\mu$ for almost all $\omega$. Explicit expressions for their Radon–Nikodym densities are obtained.
Received: 23.05.2002
Bibliographic databases:
UDC: 519.21
MSC: 28C20, 60H10
Language: English
Original paper language: Russian
Citation: A. Yu. Pilipenko, “Transformation of measures in infinite-dimensional spaces by the flow induced by a stochastic differential equation”, Sb. Math., 194:4 (2003), 551–573
Citation in format AMSBIB
\Bibitem{Pil03}
\by A.~Yu.~Pilipenko
\paper Transformation of measures in infinite-dimensional spaces by the~flow induced by a~stochastic differential equation
\jour Sb. Math.
\yr 2003
\vol 194
\issue 4
\pages 551--573
\mathnet{http://mi.mathnet.ru//eng/sm729}
\crossref{https://doi.org/10.1070/SM2003v194n04ABEH000729}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992078}
\zmath{https://zbmath.org/?q=an:1076.60051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184089700012}
\elib{https://elibrary.ru/item.asp?id=14089496}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0037828505}
Linking options:
  • https://www.mathnet.ru/eng/sm729
  • https://doi.org/10.1070/SM2003v194n04ABEH000729
  • https://www.mathnet.ru/eng/sm/v194/i4/p85
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:449
    Russian version PDF:220
    English version PDF:10
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024