Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 4, Pages 541–550
DOI: https://doi.org/10.1070/SM2003v194n04ABEH000728
(Mi sm728)
 

This article is cited in 1 scientific paper (total in 1 paper)

Smirnov–Sobolev spaces and their embeddings

A. A. Pekarskii

Yanka Kupala State University of Grodno
References:
Abstract: Let $G$ be a bounded simply connected domain with rectifiable boundary $\partial G$ and assume that $0<p<\infty$. Let $E_p(G)$ be the Smirnov space of analytic functions $f$ in $G$. The Smirnov–Sobolev space $E_p^s(G)$, $s\in\mathbb N$, consists of analytic functions $f$ in $G$ such that $f^{(s)}\in E_p(G)$. If $G$ is a disc, then $E_p(G)$ is the Hardy space and $E_p^s(G)$ is the Hardy–Sobolev space. In that case the following Hardy–Littlewood embedding is known:
$$ E_\sigma^s(G)\subset E_p(G), \qquad 1/\sigma=s+1/p. $$

The author has recently extended this embedding to Smirnov–Sobolev spaces in Lavrent'ev domains. A further generalization of the Hardy–Littlewood embedding is obtained in the present paper. Namely, it is shown that such an embedding holds if the domain $G$ satisfies the following condition: for all points $\xi$ and $\eta$ in $\partial G$,
$$ |\Gamma(\xi,\eta)|\leqslant \chi\rho^+(\xi,\eta), \qquad \chi=\chi(G)\geqslant 1. $$

Here $|\Gamma(\xi,\eta)|$ is the length of the smallest of the two arcs of $\partial G$ connecting $\xi$ and $\eta$; $\rho^+(\xi,\eta)$ is the interior distance (with respect to $G$) between the points $\xi$ and $\eta$.
Received: 28.09.2001 and 02.09.2002
Bibliographic databases:
UDC: 517.53
MSC: 30D55, 30D60
Language: English
Original paper language: Russian
Citation: A. A. Pekarskii, “Smirnov–Sobolev spaces and their embeddings”, Sb. Math., 194:4 (2003), 541–550
Citation in format AMSBIB
\Bibitem{Pek03}
\by A.~A.~Pekarskii
\paper Smirnov--Sobolev spaces and their embeddings
\jour Sb. Math.
\yr 2003
\vol 194
\issue 4
\pages 541--550
\mathnet{http://mi.mathnet.ru//eng/sm728}
\crossref{https://doi.org/10.1070/SM2003v194n04ABEH000728}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992077}
\zmath{https://zbmath.org/?q=an:1062.30039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184089700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0037828478}
Linking options:
  • https://www.mathnet.ru/eng/sm728
  • https://doi.org/10.1070/SM2003v194n04ABEH000728
  • https://www.mathnet.ru/eng/sm/v194/i4/p75
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:483
    Russian version PDF:226
    English version PDF:13
    References:45
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024