Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 8, Pages 1217–1248
DOI: https://doi.org/10.1070/SM2010v201n08ABEH004110
(Mi sm6369)
 

This article is cited in 11 scientific papers (total in 11 papers)

Covering planar sets

V. P. Filimonov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Problems connected with the classical Borsuk problem on partitioning a set in Euclidean space into subsets of smaller diameter, and also connected with the Nelson-Hadwiger problem on the chromatic number of Euclidean space, are studied. New bounds are obtained for the quantities dn=supdn(Φ) and dn=supdn(Φ), where the suprema are taken over all sets of unit diameter on a plane, and where the quantities dn(Φ) and dn(Φ) are defined for a given bounded set ΦR2 as follows:
dn(Φ)=inf{xR+:ΦΦ1Φn,i diamΦix},dn(Φ)=inf{xR+:ΦΦ1Φn,i X,YΦi XYx}.
Here the ΦiR2 are subsets, diamΦi is the diameter of Φi, XY is the distance between the points X and Y, and nN. The bounds obtained for dn are better than any known before; this paper is the first to consider the values dn.
Bibliography: 19 titles.
Keywords: chromatic number, Borsuk problem, diameter of a set, coverings of planar sets, universal covering sets and systems.
Received: 27.05.2008 and 24.08.2009
Bibliographic databases:
Document Type: Article
UDC: 514.174
MSC: 52C15
Language: English
Original paper language: Russian
Citation: V. P. Filimonov, “Covering planar sets”, Sb. Math., 201:8 (2010), 1217–1248
Citation in format AMSBIB
\Bibitem{Fil10}
\by V.~P.~Filimonov
\paper Covering planar sets
\jour Sb. Math.
\yr 2010
\vol 201
\issue 8
\pages 1217--1248
\mathnet{http://mi.mathnet.ru/eng/sm6369}
\crossref{https://doi.org/10.1070/SM2010v201n08ABEH004110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2907825}
\zmath{https://zbmath.org/?q=an:1203.52014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201.1217F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282646600007}
\elib{https://elibrary.ru/item.asp?id=19066227}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958533677}
Linking options:
  • https://www.mathnet.ru/eng/sm6369
  • https://doi.org/10.1070/SM2010v201n08ABEH004110
  • https://www.mathnet.ru/eng/sm/v201/i8/p127
  • This publication is cited in the following 11 articles:
    1. Arthur Bikeev, “Borsuk's problem, Boltyanski's illumination problem, and circumradius”, Moscow J. Comb. Number Th., 12:3 (2023), 223  crossref
    2. V. O. Koval, “On the Partition of Plane Sets Into 6 Subsets of Small Diameter”, J Math Sci, 275:2 (2023), 177  crossref
    3. A.D. Tolmachev, D.S. Protasov, V.A. Voronov, “Coverings of planar and three-dimensional sets with subsets of smaller diameter”, Discrete Applied Mathematics, 320 (2022), 270  crossref
    4. Lian Ya. Wu S., “Partition Bounded Sets Into Sets Having Smaller Diameters”, Results Math., 76:3 (2021), 116  crossref  mathscinet  isi
    5. A. D. Tolmachev, D. S. Protasov, “Covering planar sets”, Dokl. Math., 104:1 (2021), 196–199  mathnet  crossref  crossref  zmath  elib
    6. V. O. Koval, “O razbienii ploskikh mnozhestv na $6$ chastei malogo diametra”, Kombinatorika i teoriya grafov. XII, Zap. nauchn. sem. POMI, 497, POMI, SPb., 2020, 100–123  mathnet
    7. V. P. Filimonov, “Covering sets in $\mathbb{R}^m$”, Sb. Math., 205:8 (2014), 1160–1200  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. Andrei M. Raigorodskii, Thirty Essays on Geometric Graph Theory, 2013, 429  crossref
    9. Bulankina V.V., “O razbienii ploskikh mnozhestv na pyat chastei bez rasstoyaniya: $\sqrt{2-\sqrt{3}}$”, Tr. Moskovskogo fiziko-tekhnicheskogo instituta, 4:1-13 (2012), 56–72  elib
    10. Voronetskii E.Yu., “O razbienii ploskikh mnozhestv na chetyre, pyat i shest chastei bez dostatochno malenkikh rasstoyanii”, Tr. Moskovskogo fiziko-tekhnicheskogo instituta, 4:1-13 (2012), 73–76  elib
    11. Belov D., Aleksandrov N., “O razbienii ploskikh mnozhestv na shest chastei malogo diametra”, Tr. Moskovskogo fiziko-tekhnicheskogo instituta, 4:1-13 (2012), 77–80  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:649
    Russian version PDF:306
    English version PDF:38
    References:87
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025