Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 8, Pages 1217–1248
DOI: https://doi.org/10.1070/SM2010v201n08ABEH004110
(Mi sm6369)
 

This article is cited in 11 scientific papers (total in 11 papers)

Covering planar sets

V. P. Filimonov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Problems connected with the classical Borsuk problem on partitioning a set in Euclidean space into subsets of smaller diameter, and also connected with the Nelson-Hadwiger problem on the chromatic number of Euclidean space, are studied. New bounds are obtained for the quantities $d_n=\sup d_n(\Phi)$ and $d'_n=\sup d'_n(\Phi)$, where the suprema are taken over all sets of unit diameter on a plane, and where the quantities $d_n(\Phi)$ and $d'_n(\Phi)$ are defined for a given bounded set $\Phi\subset\mathbb{R}^2$ as follows:
\begin{align*} d_n(\Phi)&=\inf\{x\in\mathbb{R}^+:\Phi\subseteq \Phi_1\cup\dots\cup\Phi_n,\,\forall\, i\ \operatorname{diam}\Phi_i\le x\}, \\ d'_n(\Phi)&=\inf\{x\in\mathbb{R}^+:\Phi\subseteq \Phi_1\cup\dots\cup\Phi_n,\,\forall\, i\ \forall\, X,Y\in\Phi_i\,\ XY\ne x\}. \end{align*}
Here the $\Phi_i\subset\mathbb R^2$ are subsets, $\operatorname{diam}\Phi_i$ is the diameter of $\Phi_i$, $XY$ is the distance between the points $X$ and $Y$, and $n\in \mathbb N$. The bounds obtained for $d_n$ are better than any known before; this paper is the first to consider the values $d'_n$.
Bibliography: 19 titles.
Keywords: chromatic number, Borsuk problem, diameter of a set, coverings of planar sets, universal covering sets and systems.
Received: 27.05.2008 and 24.08.2009
Russian version:
Matematicheskii Sbornik, 2010, Volume 201, Number 8, Pages 127–160
DOI: https://doi.org/10.4213/sm6369
Bibliographic databases:
Document Type: Article
UDC: 514.174
MSC: 52C15
Language: English
Original paper language: Russian
Citation: V. P. Filimonov, “Covering planar sets”, Mat. Sb., 201:8 (2010), 127–160; Sb. Math., 201:8 (2010), 1217–1248
Citation in format AMSBIB
\Bibitem{Fil10}
\by V.~P.~Filimonov
\paper Covering planar sets
\jour Mat. Sb.
\yr 2010
\vol 201
\issue 8
\pages 127--160
\mathnet{http://mi.mathnet.ru/sm6369}
\crossref{https://doi.org/10.4213/sm6369}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2907825}
\zmath{https://zbmath.org/?q=an:1203.52014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201.1217F}
\elib{https://elibrary.ru/item.asp?id=19066227}
\transl
\jour Sb. Math.
\yr 2010
\vol 201
\issue 8
\pages 1217--1248
\crossref{https://doi.org/10.1070/SM2010v201n08ABEH004110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282646600007}
\elib{https://elibrary.ru/item.asp?id=16976901}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958533677}
Linking options:
  • https://www.mathnet.ru/eng/sm6369
  • https://doi.org/10.1070/SM2010v201n08ABEH004110
  • https://www.mathnet.ru/eng/sm/v201/i8/p127
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:590
    Russian version PDF:287
    English version PDF:24
    References:71
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024