Abstract:
Problems connected with the classical Borsuk problem on partitioning a set in Euclidean space into subsets of smaller diameter, and also connected with the Nelson-Hadwiger problem on the chromatic number of Euclidean space, are studied. New bounds are obtained for the quantities dn=supdn(Φ) and d′n=supd′n(Φ), where the suprema are taken over all sets of unit diameter on a plane, and where the quantities dn(Φ) and d′n(Φ) are defined for a given bounded set Φ⊂R2 as follows:
dn(Φ)=inf{x∈R+:Φ⊆Φ1∪⋯∪Φn,∀idiamΦi⩽x},d′n(Φ)=inf{x∈R+:Φ⊆Φ1∪⋯∪Φn,∀i∀X,Y∈ΦiXY≠x}.
Here the Φi⊂R2 are subsets, diamΦi is the diameter of Φi, XY is the distance between the points X and Y, and n∈N. The bounds obtained for dn are better than any known before; this paper is the first to consider the values d′n.
Bibliography: 19 titles.
Keywords:
chromatic number, Borsuk problem, diameter of a set, coverings of planar sets, universal covering sets and systems.
This publication is cited in the following 11 articles:
Arthur Bikeev, “Borsuk's problem, Boltyanski's illumination
problem, and circumradius”, Moscow J. Comb. Number Th., 12:3 (2023), 223
V. O. Koval, “On the Partition of Plane Sets Into 6 Subsets of Small Diameter”, J Math Sci, 275:2 (2023), 177
A.D. Tolmachev, D.S. Protasov, V.A. Voronov, “Coverings of planar and three-dimensional sets with subsets of smaller diameter”, Discrete Applied Mathematics, 320 (2022), 270
Lian Ya. Wu S., “Partition Bounded Sets Into Sets Having Smaller Diameters”, Results Math., 76:3 (2021), 116
A. D. Tolmachev, D. S. Protasov, “Covering planar sets”, Dokl. Math., 104:1 (2021), 196–199
V. O. Koval, “O razbienii ploskikh mnozhestv na $6$ chastei malogo diametra”, Kombinatorika i teoriya grafov. XII, Zap. nauchn. sem. POMI, 497, POMI, SPb., 2020, 100–123
V. P. Filimonov, “Covering sets in $\mathbb{R}^m$”, Sb. Math., 205:8 (2014), 1160–1200
Andrei M. Raigorodskii, Thirty Essays on Geometric Graph Theory, 2013, 429
Bulankina V.V., “O razbienii ploskikh mnozhestv na pyat chastei bez rasstoyaniya: $\sqrt{2-\sqrt{3}}$”, Tr. Moskovskogo fiziko-tekhnicheskogo instituta, 4:1-13 (2012), 56–72
Voronetskii E.Yu., “O razbienii ploskikh mnozhestv na chetyre, pyat i shest chastei bez dostatochno malenkikh rasstoyanii”, Tr. Moskovskogo fiziko-tekhnicheskogo instituta, 4:1-13 (2012), 73–76
Belov D., Aleksandrov N., “O razbienii ploskikh mnozhestv na shest chastei malogo diametra”, Tr. Moskovskogo fiziko-tekhnicheskogo instituta, 4:1-13 (2012), 77–80