Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 8, Pages 1091–1110
DOI: https://doi.org/10.1070/SM2010v201n08ABEH004104
(Mi sm7505)
 

This article is cited in 35 scientific papers (total in 35 papers)

The widths of classes of analytic functions in a disc

S. B. Vakarchuka, M. Sh. Shabozovb

a Dnepropetrovsk University of Economics and Law
b Institute of Mathematics, Academy of Sciences of Republic of Tajikistan
References:
Abstract: The precise values of several $n$-widths of the classes $W^m_{p,R}(\Psi)$, $1\leqslant p<\infty$, $m\in\mathbb N$, $R\geqslant1$, in the Banach spaces $\mathscr L_{p,\gamma}$ and $B_{p,\gamma}$ are calculated, where $\gamma$ is a weight. These are classes of analytic functions $f$ in a disc of radius $R$ whose $m$th derivatives $f^{(m)}$ belong to the Hardy space $H_{p,R}$ and whose angular boundary values have averaged moduli of smoothness of second order which are majorized by the fixed function $\Psi$ on the point set $\{\pi/(2k)\}_{k\in\mathbb N}$. For the classes $W^m_{p,R}(\Psi)$ best linear methods of approximation in $\mathscr L_{p,\gamma}$ are developed. Extremal problems of related content are also considered. Bibliography: 37 titles.
Keywords: weight function, best linear method of approximation, optimal method of function recovery, best method of coding of functions.
Received: 25.11.2008 and 19.04.2010
Russian version:
Matematicheskii Sbornik, 2010, Volume 201, Number 8, Pages 3–22
DOI: https://doi.org/10.4213/sm7505
Bibliographic databases:
Document Type: Article
UDC: 517.538.5
MSC: Primary 41A46; Secondary 46E15
Language: English
Original paper language: Russian
Citation: S. B. Vakarchuk, M. Sh. Shabozov, “The widths of classes of analytic functions in a disc”, Mat. Sb., 201:8 (2010), 3–22; Sb. Math., 201:8 (2010), 1091–1110
Citation in format AMSBIB
\Bibitem{VakSha10}
\by S.~B.~Vakarchuk, M.~Sh.~Shabozov
\paper The widths of classes of analytic functions in a~disc
\jour Mat. Sb.
\yr 2010
\vol 201
\issue 8
\pages 3--22
\mathnet{http://mi.mathnet.ru/sm7505}
\crossref{https://doi.org/10.4213/sm7505}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2907819}
\zmath{https://zbmath.org/?q=an:1203.41016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201.1091V}
\elib{https://elibrary.ru/item.asp?id=19066221}
\transl
\jour Sb. Math.
\yr 2010
\vol 201
\issue 8
\pages 1091--1110
\crossref{https://doi.org/10.1070/SM2010v201n08ABEH004104}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282646600001}
\elib{https://elibrary.ru/item.asp?id=17118333}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958562293}
Linking options:
  • https://www.mathnet.ru/eng/sm7505
  • https://doi.org/10.1070/SM2010v201n08ABEH004104
  • https://www.mathnet.ru/eng/sm/v201/i8/p3
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:872
    Russian version PDF:272
    English version PDF:23
    References:97
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024