Abstract:
Theorems describing the sharp constants for the approximation
of a general class of analytic functions by rational functions are proved.
Magnus's conjecture on the sharp constant for the approximation
of e−z on [0,∞] is established as a consequence.
For the proof of the theorems new formulae expressing the strong
asymptotics of polynomials orthogonal with respect to a varying complex weight are obtained.
This publication is cited in the following 65 articles:
A. P. Magnus, J. Meinguet, “Strong asymptotics of the best rational approximation to the exponential function on a bounded interval”, Sb. Math., 215:12 (2024), 1666–1719
Promit Ghosal, Guilherme L. F. Silva, “Universality for Multiplicative Statistics of Hermitian Random Matrices and the Integro-Differential Painlevé II Equation”, Commun. Math. Phys., 397:3 (2023), 1237
Yattselev M.L., “On Smooth Perturbations of Chebyshev Polynomials and (Partial Derivative)Over-Bar-Riemann-Hilbert Method”, Can. Math. Bul.-Bul. Can. Math., 2022, PII S0008439522000145
A. I. Aptekarev, M. L. Yattselev, “Gipoteza Gonchara–Chudnovskikh i funktsionalnyi analog teoremy Tue–Zigelya–Rota”, Tr. MMO, 83, no. 2, MTsNMO, M., 2022, 297–318
A. I. Aptekarev, M. Yattselev, “The Gonchar–Chudnovskies conjecture and a functional analogue of the Thue–Siegel–Roth theorem”, Trans. Moscow Math. Soc., 2022, –
Barhoumi A., Celsus A.F., Deano A., “Global-Phase Portrait and Large-Degree Asymptotics For the Kissing Polynomials”, Stud. Appl. Math., 147:2 (2021), 448–526
Beckermann B., Cortinovis A., Kressner D., Schweitzer M., “Low-Rank Updates of Matrix Functions II: Rational Krylov Methods”, SIAM J. Numer. Anal., 59:3 (2021), 1325–1347
Guillermo López-Lagomasino, SEMA SIMAI Springer Series, 22, Orthogonal Polynomials: Current Trends and Applications, 2021, 237
Kuijlaars A.B.J., Mina-Diaz E., “Universality For Conditional Measures of the Sine Point Process”, J. Approx. Theory, 243 (2019), 1–24
Aptekarev A.I. Lapik M.A. Lysov V.G., “Direct and Inverse Problems For Vector Logarithmic Potentials With External Fields”, Anal. Math. Phys., 9:3 (2019), 919–935
Doron S. Lubinsky, Applied and Numerical Harmonic Analysis, Topics in Classical and Modern Analysis, 2019, 241
Yattselev M.L., “Symmetric Contours and Convergent Interpolation”, J. Approx. Theory, 225 (2018), 76–105
Nakatsukasa Yu., Sete O., Trefethen L.N., “The Aaa Algorithm For Rational Approximation”, SIAM J. Sci. Comput., 40:3 (2018), A1494–A1522
Nakatsukasa Yu., Trefethen L.N., “Rational Approximation of X(N)”, Proc. Amer. Math. Soc., 146:12 (2018), 5219–5224
E. A. Rakhmanov, “The Gonchar-Stahl ρ2-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266
A. I. Aptekarev, M. L. Yattselev, “Priblizheniya algebraicheskikh funktsii ratsionalnymi — funktsionalnye analogi diofantovykh approksimatsii”, Preprinty IPM im. M. V. Keldysha, 2016, 084, 24 pp.
Aptekarev A.I., “The Mhaskar–Saff Variational Principle and Location of the Shocks of Certain Hyperbolic Equations”, Modern Trends in Constructive Function Theory, Contemporary Mathematics, 661, ed. Hardin D. Lubinsky D. Simanek B., Amer Mathematical Soc, 2016, 167–186
S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951
V. M. Buchstaber, V. N. Dubinin, V. A. Kaliaguine, B. S. Kashin, V. N. Sorokin, S. P. Suetin, D. N. Tulyakov, B. N. Chetverushkin, E. M. Chirka, A. A. Shkalikov, “Alexander Ivanovich Aptekarev (on his 60th birthday)”, Russian Math. Surveys, 70:5 (2015), 965–973