Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 1, Pages 73–82
DOI: https://doi.org/10.1070/SM2002v193n01ABEH000620
(Mi sm620)
 

This article is cited in 6 scientific papers (total in 6 papers)

$k$-Regular maps into Euclidean spaces and the Borsuk–Boltyanskii problem

S. A. Bogatyi

M. V. Lomonosov Moscow State University
References:
Abstract: The Borsuk–Boltyanskii problem is solved for odd $k$, that is, the minimum dimension of a Euclidean space is determined into which any $n$-dimensional polyhedron (compactum) can be $k$-regularly embedded. A new lower bound is obtained for even $k$.
Received: 27.09.2000
Bibliographic databases:
UDC: 515.127.15
MSC: Primary 54C25; Secondary 54C15, 54B10
Language: English
Original paper language: Russian
Citation: S. A. Bogatyi, “$k$-Regular maps into Euclidean spaces and the Borsuk–Boltyanskii problem”, Sb. Math., 193:1 (2002), 73–82
Citation in format AMSBIB
\Bibitem{Bog02}
\by S.~A.~Bogatyi
\paper $k$-Regular maps into Euclidean spaces and the~Borsuk--Boltyanskii problem
\jour Sb. Math.
\yr 2002
\vol 193
\issue 1
\pages 73--82
\mathnet{http://mi.mathnet.ru//eng/sm620}
\crossref{https://doi.org/10.1070/SM2002v193n01ABEH000620}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1906171}
\zmath{https://zbmath.org/?q=an:1041.54018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000175532600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036012350}
Linking options:
  • https://www.mathnet.ru/eng/sm620
  • https://doi.org/10.1070/SM2002v193n01ABEH000620
  • https://www.mathnet.ru/eng/sm/v193/i1/p73
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:429
    Russian version PDF:220
    English version PDF:23
    References:90
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024