Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 4, Pages 537–550
DOI: https://doi.org/10.1070/sm2001v192n04ABEH000557
(Mi sm557)
 

This article is cited in 5 scientific papers (total in 5 papers)

Eigenvalue estimates for Hankel matrices

N. L. Zamarashkin, E. E. Tyrtyshnikov

Institute of Numerical Mathematics, Russian Academy of Sciences
References:
Abstract: Positive-definite Hankel matrices have an important property: the ratio of the largest and the smallest eigenvalues (the spectral condition number) has as a lower bound an increasing exponential of the order of the matrix that is independent of the particular matrix entries. The proof of this fact is related to the so-called Vandermonde factorizations of positive-definite Hankel matrices. In this paper the structure of these factorizations is studied for real sign-indefinite strongly regular Hankel matrices. Some generalizations of the estimates of the spectral condition number are suggested.
Received: 15.06.2000
Bibliographic databases:
UDC: 512.64
MSC: Primary 15A18, 65F15, 15A27; Secondary 15A32, 65F35
Language: English
Original paper language: Russian
Citation: N. L. Zamarashkin, E. E. Tyrtyshnikov, “Eigenvalue estimates for Hankel matrices”, Sb. Math., 192:4 (2001), 537–550
Citation in format AMSBIB
\Bibitem{ZamTyr01}
\by N.~L.~Zamarashkin, E.~E.~Tyrtyshnikov
\paper Eigenvalue estimates for Hankel matrices
\jour Sb. Math.
\yr 2001
\vol 192
\issue 4
\pages 537--550
\mathnet{http://mi.mathnet.ru/eng/sm557}
\crossref{https://doi.org/10.1070/sm2001v192n04ABEH000557}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1834091}
\zmath{https://zbmath.org/?q=an:1011.15003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169973700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035534769}
Linking options:
  • https://www.mathnet.ru/eng/sm557
  • https://doi.org/10.1070/sm2001v192n04ABEH000557
  • https://www.mathnet.ru/eng/sm/v192/i4/p59
  • This publication is cited in the following 5 articles:
    1. Dette H., Tomecki D., “Hankel Determinants of Random Moment Sequences”, J. Theor. Probab., 30:4 (2017), 1539–1564  crossref  mathscinet  zmath  isi  scopus
    2. Olshevsky A., “Eigenvalue clustering, control energy, and logarithmic capacity”, Syst. Control Lett., 96 (2016), 45–50  crossref  mathscinet  zmath  isi  scopus
    3. Jianzhong Wang, Geometric Structure of High-Dimensional Data and Dimensionality Reduction, 2012, 299  crossref
    4. Jianzhong Wang, Geometric Structure of High-Dimensional Data and Dimensionality Reduction, 2012, 131  crossref
    5. Mark A. Rothstein, “Genetic Exceptionalism and Legislative Pragmatism”, J. Law. Med. Ethics, 35:S2 (2007), 59  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:863
    Russian version PDF:405
    English version PDF:71
    References:105
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025