Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 4, Pages 537–550
DOI: https://doi.org/10.1070/sm2001v192n04ABEH000557
(Mi sm557)
 

This article is cited in 5 scientific papers (total in 5 papers)

Eigenvalue estimates for Hankel matrices

N. L. Zamarashkin, E. E. Tyrtyshnikov

Institute of Numerical Mathematics, Russian Academy of Sciences
References:
Abstract: Positive-definite Hankel matrices have an important property: the ratio of the largest and the smallest eigenvalues (the spectral condition number) has as a lower bound an increasing exponential of the order of the matrix that is independent of the particular matrix entries. The proof of this fact is related to the so-called Vandermonde factorizations of positive-definite Hankel matrices. In this paper the structure of these factorizations is studied for real sign-indefinite strongly regular Hankel matrices. Some generalizations of the estimates of the spectral condition number are suggested.
Received: 15.06.2000
Bibliographic databases:
UDC: 512.64
MSC: Primary 15A18, 65F15, 15A27; Secondary 15A32, 65F35
Language: English
Original paper language: Russian
Citation: N. L. Zamarashkin, E. E. Tyrtyshnikov, “Eigenvalue estimates for Hankel matrices”, Sb. Math., 192:4 (2001), 537–550
Citation in format AMSBIB
\Bibitem{ZamTyr01}
\by N.~L.~Zamarashkin, E.~E.~Tyrtyshnikov
\paper Eigenvalue estimates for Hankel matrices
\jour Sb. Math.
\yr 2001
\vol 192
\issue 4
\pages 537--550
\mathnet{http://mi.mathnet.ru//eng/sm557}
\crossref{https://doi.org/10.1070/sm2001v192n04ABEH000557}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1834091}
\zmath{https://zbmath.org/?q=an:1011.15003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169973700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035534769}
Linking options:
  • https://www.mathnet.ru/eng/sm557
  • https://doi.org/10.1070/sm2001v192n04ABEH000557
  • https://www.mathnet.ru/eng/sm/v192/i4/p59
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:794
    Russian version PDF:384
    English version PDF:44
    References:87
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024