Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 4, Pages 551–564
DOI: https://doi.org/10.1070/sm2001v192n04ABEH000558
(Mi sm558)
 

This article is cited in 4 scientific papers (total in 4 papers)

On balanced systems of idempotents

D. N. Ivanov

M. V. Lomonosov Moscow State University
References:
Abstract: By definition, a balanced basis of an associative semisimple finite-dimensional algebra over the field of complex numbers $\mathbb C$ is a system of idempotents $\{e_i\}$ such that it forms a linear basis and the $\operatorname{Tr}e_i$ and $\operatorname{Tr}e_ie_j$ are independent of $i$$j$, $i\ne j$, where $\operatorname{Tr}$ is the trace of the regular representation of the algebra. In the present paper balanced bases are constructed in the matrix algebra $\mathrm M_{p^n}(\mathbb C)$, where $p$ is an odd prime. For matrix algebras such bases have so far been known only in the cases $\mathrm M_2(\mathbb C)$ and $\mathrm M_3(\mathbb C)$. It is proved that there are no balanced bases of certain ranks having a regular elementary Abelian 2-group of automorphisms in the algebras $\mathrm M_{2^n}(\mathbb C)$, $n>1$. In addition, the balanced 1-systems of $n+1$ idempotents of rank $r$ in the algebra $\mathrm M_{rn}(\mathbb C)$ are classified.
Received: 15.03.2000
Russian version:
Matematicheskii Sbornik, 2001, Volume 192, Number 4, Pages 73–86
DOI: https://doi.org/10.4213/sm558
Bibliographic databases:
UDC: 512.538+512.542+519.1
MSC: Primary 16S50; Secondary 15A30
Language: English
Original paper language: Russian
Citation: D. N. Ivanov, “On balanced systems of idempotents”, Mat. Sb., 192:4 (2001), 73–86; Sb. Math., 192:4 (2001), 551–564
Citation in format AMSBIB
\Bibitem{Iva01}
\by D.~N.~Ivanov
\paper On balanced systems of idempotents
\jour Mat. Sb.
\yr 2001
\vol 192
\issue 4
\pages 73--86
\mathnet{http://mi.mathnet.ru/sm558}
\crossref{https://doi.org/10.4213/sm558}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1834092}
\zmath{https://zbmath.org/?q=an:1022.16018}
\transl
\jour Sb. Math.
\yr 2001
\vol 192
\issue 4
\pages 551--564
\crossref{https://doi.org/10.1070/sm2001v192n04ABEH000558}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169973700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035534772}
Linking options:
  • https://www.mathnet.ru/eng/sm558
  • https://doi.org/10.1070/sm2001v192n04ABEH000558
  • https://www.mathnet.ru/eng/sm/v192/i4/p73
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:394
    Russian version PDF:200
    English version PDF:24
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024