Abstract:
With a GG-space, where GG is a compact Lie group, one can associate an ideal in the cohomology ring of the classifying space for GG. It is called the ideal-valued index of the GG-space. A filtration of the ideal-valued index that arises in a natural way from the Leray spectral sequence is considered. Properties of the index with filtration are studied and numerical indices are introduced. These indices are convenient for estimates of the GG-category and the study of the set of critical points of a GG-invariant functional defined on a manifold.
A generalization of the Bourgin–Yang theorem for the index with filtration is proved. This result is used for estimates of the index of the space of partial coincidences for a map of a space with pp-torus action in a Euclidean space.
\Bibitem{Vol00}
\by A.~Yu.~Volovikov
\paper On the index of $G$-spaces
\jour Sb. Math.
\yr 2000
\vol 191
\issue 9
\pages 1259--1277
\mathnet{http://mi.mathnet.ru/eng/sm504}
\crossref{https://doi.org/10.1070/sm2000v191n09ABEH000504}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1805595}
\zmath{https://zbmath.org/?q=an:0987.57016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166687700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034354929}
Linking options:
https://www.mathnet.ru/eng/sm504
https://doi.org/10.1070/sm2000v191n09ABEH000504
https://www.mathnet.ru/eng/sm/v191/i9/p3
This publication is cited in the following 35 articles:
Dimpi, Hemant Kumar Singh, “Orbit spaces of free involutions on the product of three spheres”, Quaestiones Mathematicae, 2024, 1
Leandro V. Mauri, Denise de Mattos, Edivaldo L. dos Santos, “Colored Tverberg theorem with new constraints on the faces”, Topology and its Applications, 341 (2024), 108743
Samik Basu, Bikramjit Kundu, “The index of certain Stiefel manifolds”, J. Fixed Point Theory Appl., 26:4 (2024)
Oleg R. Musin, Alexey Yu. Volovikov, “Borsuk–Ulam type theorems for G-spaces with applications to Tucker type lemmas”, J. Fixed Point Theory Appl., 25:1 (2023)
Kumari A., Singh H.K., “Fixed Point Free Actions of Spheres and Equivariant Maps”, Topology Appl., 305 (2022), 107886
Anju Kumari, Hemant Singh, “Cohomology classification of spaces with free S1 and S3-actions”, Filomat, 36:20 (2022), 7021
Avvakumov S., Kudrya S., “Vanishing of All Equivariant Obstructions and the Mapping Degree”, Discret. Comput. Geom., 66:3 (2021), 1202–1216
Blagojevic P.V.M., Palic N., Soberon P., Ziegler G.M., “Cutting a Part From Many Measures”, Forum Math. Sigma, 7 (2020), e37
Singh H.K. Singh K.S., “Indices of a Finitistic Space With Mod 2 Cohomology P-N X <Mml:Msup>S2</Mml:Msup>”, Indian J. Pure Appl. Math., 50:1 (2019), 23–34
Dey P., Singh M., “Free Actions of Some Compact Groups on Milnor Manifolds”, Glasg. Math. J., 61:3 (2019), 727–742
Singh S.K., Singh H.K., Singh T.B., “Borsuk-Ulam Theorems and Their Parametrized Versions For F P-M X S-3”, Bull. Braz. Math. Soc., 49:1 (2018), 179–197
Singh K.S., Singh H.K., Singh T.B., “Free Action of Finite Groups on Spaces of Cohomology Type (0, B)”, Glasg. Math. J., 60:3 (2018), 673–680
Blaszczyk Z. Marzantowicz W. Singh M., “General Bourgin-Yang Theorems”, Topology Appl., 249 (2018), 112–126
Baralic D., Blagojevic P.V.M., Karasev R., Vucic A., “Index of Grassmann Manifolds and Orthogonal Shadows”, Forum Math., 30:6 (2018), 1539–1572
Singh M., “Equivariant Maps from Stiefel Bundles to Vector Bundles”, Proc. Edinb. Math. Soc., 60:1 (2017), 231–250
Singh S.K., Singh H.K., Singh T.B., “a Borsuk-Ulam Type Theorem For the Product of a Projective Space and 3-Sphere”, Topology Appl., 225 (2017), 112–129
Oleg R. Musin, Alexey Yu. Volovikov, “Borsuk–Ulam type spaces”, Mosc. Math. J., 15:4 (2015), 749–766
Blagojevic P.V.M., Lueck W., Ziegler G.M., “Equivariant Topology of Configuration Spaces”, J. Topol., 8:2 (2015), 414–456
P.V..M. Blagojević, R.N.. Karasev, “The Schwarz genus of the Stiefel manifold”, Topology and its Applications, 2013
Deo S., “Index of a Finitistic Space and a Generalization of the Topological Central Point Theorem”, J. Ramanujan Math. Soc., 28:2 (2013), 223–232