Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 9, Pages 1279–1300
DOI: https://doi.org/10.1070/sm2000v191n09ABEH000505
(Mi sm505)
 

Spectral properties of an operator of Riesz potential type and its product with the Bergman projection on a bounded domain

M. R. Dostanic
References:
Abstract: An exact asymptotic formula for the singular values of the product of an operator of Riesz potential type and the Bergman projection on a bounded domain is obtained. It is shown that these singular values determine the length of the boundary of the domain. It was known before that the spectrum of the operator of Riesz potential type determines the area of the domain.
Received: 27.04.1999
Bibliographic databases:
UDC: 517.98
MSC: 47G10, 42B20
Language: English
Original paper language: Russian
Citation: M. R. Dostanic, “Spectral properties of an operator of Riesz potential type and its product with the Bergman projection on a bounded domain”, Sb. Math., 191:9 (2000), 1279–1300
Citation in format AMSBIB
\Bibitem{Dos00}
\by M.~R.~Dostanic
\paper Spectral properties of an~operator of Riesz potential type and its product with the~Bergman projection on a~bounded domain
\jour Sb. Math.
\yr 2000
\vol 191
\issue 9
\pages 1279--1300
\mathnet{http://mi.mathnet.ru//eng/sm505}
\crossref{https://doi.org/10.1070/sm2000v191n09ABEH000505}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1805596}
\zmath{https://zbmath.org/?q=an:0990.47039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166687700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034341562}
Linking options:
  • https://www.mathnet.ru/eng/sm505
  • https://doi.org/10.1070/sm2000v191n09ABEH000505
  • https://www.mathnet.ru/eng/sm/v191/i9/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:708
    Russian version PDF:214
    English version PDF:19
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024