Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 10, Pages 1505–1521
DOI: https://doi.org/10.1070/SM2008v199n10ABEH003970
(Mi sm4503)
 

This article is cited in 14 scientific papers (total in 14 papers)

Multidimensional versions of Poincaré's theorem for difference equations

E. K. Leinartasa, M. Passareb, A. K. Tsikha

a Siberian Federal University
b Stockholm University
References:
Abstract: A generalization to several variables of the classical Poincaré theorem on the asymptotic behaviour of solutions of a linear difference equation is presented. Two versions are considered: 1) general solutions of a system of $n$ equations with respect to a function of $n$ variables and 2) special solutions of a scalar equation. The classical Poincaré theorem presumes that all the zeros of the limiting symbol have different absolute values. Using the notion of an amoeba of an algebraic hypersurface, a multidimensional analogue of this property is formulated; it ensures nice asymptotic behaviour of special solutions of the corresponding difference equation.
Bibliography: 20 titles.
Received: 27.12.2007
Bibliographic databases:
UDC: 517.55+517.965
MSC: Primary 39A11; Secondary 32A60
Language: English
Original paper language: Russian
Citation: E. K. Leinartas, M. Passare, A. K. Tsikh, “Multidimensional versions of Poincaré's theorem for difference equations”, Sb. Math., 199:10 (2008), 1505–1521
Citation in format AMSBIB
\Bibitem{LeiPasTsi08}
\by E.~K.~Leinartas, M.~Passare, A.~K.~Tsikh
\paper Multidimensional versions of Poincar\'e's theorem for difference equations
\jour Sb. Math.
\yr 2008
\vol 199
\issue 10
\pages 1505--1521
\mathnet{http://mi.mathnet.ru//eng/sm4503}
\crossref{https://doi.org/10.1070/SM2008v199n10ABEH003970}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2473813}
\zmath{https://zbmath.org/?q=an:1159.39003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008SbMat.199.1505L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262711500009}
\elib{https://elibrary.ru/item.asp?id=20359289}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67649856864}
Linking options:
  • https://www.mathnet.ru/eng/sm4503
  • https://doi.org/10.1070/SM2008v199n10ABEH003970
  • https://www.mathnet.ru/eng/sm/v199/i10/p87
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1070
    Russian version PDF:347
    English version PDF:52
    References:79
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024