Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 10, Pages 1481–1503
DOI: https://doi.org/10.1070/SM2008v199n10ABEH003969
(Mi sm3935)
 

This article is cited in 6 scientific papers (total in 6 papers)

Natural differential operations on manifolds: an algebraic approach

P. I. Katsyloa, D. A. Timashevb

a Scientific Research Institute for System Studies of RAS
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Natural algebraic differential operations on geometric quantities on smooth manifolds are considered. A method for the investigation and classification of such operations is described, the method of IT-reduction. With it the investigation of natural operations reduces to the analysis of rational maps between $k$-jet spaces, which are equivariant with respect to certain algebraic groups. On the basis of the method of IT-reduction a finite generation theorem is proved: for tensor bundles $\mathscr{V},\mathscr{W}\to M$ all the natural differential operations $D\colon\Gamma(\mathscr{V})\to\Gamma(\mathscr{W})$ of degree at most $d$ can be algebraically constructed from some finite set of such operations. Conceptual proofs of known results on the classification of natural linear operations on arbitrary and symplectic manifolds are presented. A non-existence theorem is proved for natural deformation quantizations on Poisson manifolds and symplectic manifolds.
Bibliography: 21 titles.
Received: 12.08.2007
Russian version:
Matematicheskii Sbornik, 2008, Volume 199, Number 10, Pages 63–86
DOI: https://doi.org/10.4213/sm3935
Bibliographic databases:
UDC: 514.74+512.815.7
MSC: Primary 58A32, 53D55; Secondary 15A72, 81S10
Language: English
Original paper language: Russian
Citation: P. I. Katsylo, D. A. Timashev, “Natural differential operations on manifolds: an algebraic approach”, Mat. Sb., 199:10 (2008), 63–86; Sb. Math., 199:10 (2008), 1481–1503
Citation in format AMSBIB
\Bibitem{KatTim08}
\by P.~I.~Katsylo, D.~A.~Timashev
\paper Natural differential operations on manifolds: an algebraic
approach
\jour Mat. Sb.
\yr 2008
\vol 199
\issue 10
\pages 63--86
\mathnet{http://mi.mathnet.ru/sm3935}
\crossref{https://doi.org/10.4213/sm3935}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2473812}
\zmath{https://zbmath.org/?q=an:1160.58006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008SbMat.199.1481K}
\elib{https://elibrary.ru/item.asp?id=20359288}
\transl
\jour Sb. Math.
\yr 2008
\vol 199
\issue 10
\pages 1481--1503
\crossref{https://doi.org/10.1070/SM2008v199n10ABEH003969}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262711500008}
\elib{https://elibrary.ru/item.asp?id=13595859}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-66149094301}
Linking options:
  • https://www.mathnet.ru/eng/sm3935
  • https://doi.org/10.1070/SM2008v199n10ABEH003969
  • https://www.mathnet.ru/eng/sm/v199/i10/p63
  • Related presentations:
    This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:693
    Russian version PDF:333
    English version PDF:17
    References:63
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024