|
This article is cited in 3 scientific papers (total in 3 papers)
Some summability methods for power series of functions in $H^p(D^n)$, $0<p<\infty$
S. G. Pribegin Odessa National Maritime University
Abstract:
Let $H^p(D^n)$ be a Hardy space in the unit polydisc
$$
D^n=\{z\in\mathbb C^n:|z_j|<1,\,j=1,\dots,n\}
$$
and let
$$
R^{l,\alpha}_\varepsilon(f,e^{i\theta})=\sum_k(1-(\varepsilon|k|)^l)^\alpha_+\widehat f_ke^{ik\theta},
\qquad l>0, \quad \alpha>0,
$$
be the generalized Riesz means of a function $f\in H^p(D^n)$.
For certain standard relations between $p$, $l$, $n$ and $\alpha$ the following estimate is
established:
$$
C_1(\alpha,l,p)\widetilde{\omega}_l(\varepsilon,f)_p
\le\bigl\|f(e^{i\theta})-R_\varepsilon^{l,\alpha}(f,e^{i\theta})\bigr\|_p
\le C_2(\alpha,l,p)\omega_l(\varepsilon,f)_p,
$$
where $\widetilde\omega_l(\varepsilon,f)_p$ and $\omega_l(\varepsilon,f)_p$ are integral moduli of
continuity of order $l$.
Bibliography: 13 titles.
Keywords:
series' means, generalized Riesz means, generalized Abel-Poisson means, right fractional Riemann-Liouville integral, right fractional derivative.
Received: 04.07.2005 and 27.11.2008
Citation:
S. G. Pribegin, “Some summability methods for power series of functions in $H^p(D^n)$, $0<p<\infty$”, Sb. Math., 200:2 (2009), 243–260
Linking options:
https://www.mathnet.ru/eng/sm4510https://doi.org/10.1070/SM2009v200n02ABEH003994 https://www.mathnet.ru/eng/sm/v200/i2/p89
|
Statistics & downloads: |
Abstract page: | 800 | Russian version PDF: | 202 | English version PDF: | 26 | References: | 56 | First page: | 20 |
|