Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 2, Pages 243–260
DOI: https://doi.org/10.1070/SM2009v200n02ABEH003994
(Mi sm4510)
 

This article is cited in 3 scientific papers (total in 3 papers)

Some summability methods for power series of functions in $H^p(D^n)$, $0<p<\infty$

S. G. Pribegin

Odessa National Maritime University
References:
Abstract: Let $H^p(D^n)$ be a Hardy space in the unit polydisc
$$ D^n=\{z\in\mathbb C^n:|z_j|<1,\,j=1,\dots,n\} $$
and let
$$ R^{l,\alpha}_\varepsilon(f,e^{i\theta})=\sum_k(1-(\varepsilon|k|)^l)^\alpha_+\widehat f_ke^{ik\theta}, \qquad l>0, \quad \alpha>0, $$
be the generalized Riesz means of a function $f\in H^p(D^n)$. For certain standard relations between $p$, $l$, $n$ and $\alpha$ the following estimate is established:
$$ C_1(\alpha,l,p)\widetilde{\omega}_l(\varepsilon,f)_p \le\bigl\|f(e^{i\theta})-R_\varepsilon^{l,\alpha}(f,e^{i\theta})\bigr\|_p \le C_2(\alpha,l,p)\omega_l(\varepsilon,f)_p, $$
where $\widetilde\omega_l(\varepsilon,f)_p$ and $\omega_l(\varepsilon,f)_p$ are integral moduli of continuity of order $l$.
Bibliography: 13 titles.
Keywords: series' means, generalized Riesz means, generalized Abel-Poisson means, right fractional Riemann-Liouville integral, right fractional derivative.
Received: 04.07.2005 and 27.11.2008
Bibliographic databases:
UDC: 517.550.2
MSC: 41A25, 42B30
Language: English
Original paper language: Russian
Citation: S. G. Pribegin, “Some summability methods for power series of functions in $H^p(D^n)$, $0<p<\infty$”, Sb. Math., 200:2 (2009), 243–260
Citation in format AMSBIB
\Bibitem{Pri09}
\by S.~G.~Pribegin
\paper Some summability methods for power series of functions in $H^p(D^n)$, $0<p<\infty$
\jour Sb. Math.
\yr 2009
\vol 200
\issue 2
\pages 243--260
\mathnet{http://mi.mathnet.ru//eng/sm4510}
\crossref{https://doi.org/10.1070/SM2009v200n02ABEH003994}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2503139}
\zmath{https://zbmath.org/?q=an:1173.41009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..243P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266224500010}
\elib{https://elibrary.ru/item.asp?id=19066109}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650896326}
Linking options:
  • https://www.mathnet.ru/eng/sm4510
  • https://doi.org/10.1070/SM2009v200n02ABEH003994
  • https://www.mathnet.ru/eng/sm/v200/i2/p89
    This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:800
    Russian version PDF:202
    English version PDF:26
    References:56
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024