Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 9, Pages 1277–1298
DOI: https://doi.org/10.1070/SM2007v198n09ABEH003883
(Mi sm3775)
 

This article is cited in 12 scientific papers (total in 12 papers)

Bases in the solution space of the Mellin system

A. Dickensteina, T. M. Sadykovb

a Universidad de Buenos Aires
b Siberian Federal University
References:
Abstract: We consider algebraic functions $z$ satisfying equations of the following form:
\begin{equation*} a_0 z^m+a_1z^{m_1}+a_2 z^{m_2}+\dots+a_nz^{m_n}+a_{n+1}=0. \tag{1} \end{equation*}
Here $m>m_1>\dots>m_n>0$, $m,m_i\in\mathbb N$, and $z=z(a_0,\dots,a_{n+1})$ is a function of the complex variables $a_0,\dots,a_{n+1}$. Solutions of such algebraic equations are known to satisfy holonomic systems of linear differential equations with polynomial coefficients. In this paper we investigate one such system, which was introduced by Mellin. The holonomic rank of this system of equations and the dimension of the linear space of its algebraic solutions are computed. An explicit base in the solution space of the Mellin system is constructed in terms of roots of (1) and their logarithms. The monodromy of the Mellin system is shown to be always reducible and several results on the factorization of the Mellin operator in the one-variable case are presented.
Bibliography: 18 titles.
Received: 11.10.2006 and 13.03.2007
Bibliographic databases:
UDC: 517.554+517.588+517.953
MSC: Primary 35G05; Secondary 33C05, 35C10
Language: English
Original paper language: Russian
Citation: A. Dickenstein, T. M. Sadykov, “Bases in the solution space of the Mellin system”, Sb. Math., 198:9 (2007), 1277–1298
Citation in format AMSBIB
\Bibitem{DicSad07}
\by A.~Dickenstein, T.~M.~Sadykov
\paper Bases in the solution space of the Mellin system
\jour Sb. Math.
\yr 2007
\vol 198
\issue 9
\pages 1277--1298
\mathnet{http://mi.mathnet.ru//eng/sm3775}
\crossref{https://doi.org/10.1070/SM2007v198n09ABEH003883}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2360791}
\zmath{https://zbmath.org/?q=an:1159.33003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252573100004}
\elib{https://elibrary.ru/item.asp?id=9557505}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38749122780}
Linking options:
  • https://www.mathnet.ru/eng/sm3775
  • https://doi.org/10.1070/SM2007v198n09ABEH003883
  • https://www.mathnet.ru/eng/sm/v198/i9/p59
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024