Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 9, Pages 1261–1275
DOI: https://doi.org/10.1070/SM2007v198n09ABEH003882
(Mi sm3629)
 

Transitive Lie groups on $S^1\times S^{2m}$

V. V. Gorbatsevich

Moscow State Aviation Technological University
References:
Abstract: The structure of Lie groups acting transitively on the direct product of a circle and an even-dimensional sphere is described. For products of two spheres of dimension $>1$ a similar problem has already been solved by other authors. The minimal transitive Lie groups on $S^1$ and $S^{2m}$ are also indicated.
As an application of these results, the structure of the automorphism group of one class of geometric structures, generalized quadrangles (a special case of Tits buildings) is considered. A conjecture put forward by Kramer is proved: the automorphism group of a connected generalized quadrangle of type $(1,2m)$ always contains a transitive subgroup that is the direct product of a compact simple Lie group and a one-dimensional Lie group.
Bibliography: 16 titles.
Received: 04.09.2006 and 09.04.2007
Russian version:
Matematicheskii Sbornik, 2007, Volume 198, Number 9, Pages 43–58
DOI: https://doi.org/10.4213/sm3629
Bibliographic databases:
UDC: 512.816.3
MSC: 57S35, 53C30
Language: English
Original paper language: Russian
Citation: V. V. Gorbatsevich, “Transitive Lie groups on $S^1\times S^{2m}$”, Mat. Sb., 198:9 (2007), 43–58; Sb. Math., 198:9 (2007), 1261–1275
Citation in format AMSBIB
\Bibitem{Gor07}
\by V.~V.~Gorbatsevich
\paper Transitive Lie groups on $S^1\times S^{2m}$
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 9
\pages 43--58
\mathnet{http://mi.mathnet.ru/sm3629}
\crossref{https://doi.org/10.4213/sm3629}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2360790}
\zmath{https://zbmath.org/?q=an:1168.57022}
\elib{https://elibrary.ru/item.asp?id=9557504}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 9
\pages 1261--1275
\crossref{https://doi.org/10.1070/SM2007v198n09ABEH003882}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252573100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38749109191}
Linking options:
  • https://www.mathnet.ru/eng/sm3629
  • https://doi.org/10.1070/SM2007v198n09ABEH003882
  • https://www.mathnet.ru/eng/sm/v198/i9/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:331
    Russian version PDF:192
    English version PDF:10
    References:52
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024