Abstract:
Order estimates are obtained for the best approximations of the Besov classes Brp,θBrp,θ of periodic functions of several variables in the spaces L1L1 and L∞L∞ by trigonometric polynomials whose harmonic indices lie in step hyperbolic crosses. The orders of the orthoprojection widths of the classes
Brp,θBrp,θ and the linear widths of the classes Brp,θBrp,θ and Wrp,αWrp,α in the space L1L1 are found.
Bibliography: 22 titles.
\Bibitem{Rom08}
\by A.~S.~Romanyuk
\paper Best approximations and widths of classes of periodic functions of several variables
\jour Sb. Math.
\yr 2008
\vol 199
\issue 2
\pages 253--275
\mathnet{http://mi.mathnet.ru/eng/sm3685}
\crossref{https://doi.org/10.1070/SM2008v199n02ABEH003918}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2402200}
\zmath{https://zbmath.org/?q=an:1173.41012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255696300011}
\elib{https://elibrary.ru/item.asp?id=20359305}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44449114214}
Linking options:
https://www.mathnet.ru/eng/sm3685
https://doi.org/10.1070/SM2008v199n02ABEH003918
https://www.mathnet.ru/eng/sm/v199/i2/p93
This publication is cited in the following 32 articles:
Romanyuk A.S. Yanchenko S.Ya., “Estimates of Approximating Characteristics and the Properties of the Operators of Best Approximation For the Classes of Periodic Functions in the Space B-1,B-1”, Ukr. Math. J., 73:8 (2022), 1278–1298
A. S. Romanyuk, S. Ya. Yanchenko, “Nablizhennya klasіv perіodichnikh funktsіi odnієï ta bagatokh zmіnnikh іz prostorіv Nіkolskogo – Bєsova ta Sobolєva”, Ukr. Mat. Zhurn., 74:6 (2022), 844
A. S. Romanyuk, S. Ya. Yanchenko, “Approximation of the Classes of Periodic Functions of One and Many Variables from the Nikol'skii–Besov and Sobolev Spaces”, Ukr Math J, 74:6 (2022), 967
K. A. Bekmaganbetov, K. E. Kervenev, Y. Toleugazy, “Estimate for the Order of Orthoprojection Width of the Nikol'skii–Besov Class in the Metric of Anisotropic Lorentz Spaces”, J Math Sci, 264:5 (2022), 552
Fedunyk-Yaremchuk V O., Hembars'ka S.B., “Approximation of Classes of Periodic Functions of Several Variables With Given Majorant of Mixed Moduli of Continuity”, Carpathian Math. Publ., 13:3 (2021), 838–850
A. S. Romanyuk, S. Ya. Yanchenko, “Otsinki aproksimatsiinikh kharakteristik i vlastivosti operatoriv naikraschogo nablizhennya klasiv periodichnikh funktsii u prostori”, Ukr. Mat. Zhurn., 73:8 (2021), 1102
Mykhailo V. Hembars'kyi, Svitlana B. Hembars'ka, “Linear and Kolmogorov Widths of the Classes BΩp,\upthetaBΩp,\uptheta of Periodic Functions of One and Several Variables”, J Math Sci, 249:5 (2020), 720
Mykhailo Hembars'kyi, Svitlana Hembars'ka, “Linear and Kolmogorov widths of the classes B^{\Omega}_{p, \theta} of periodic functions of one and several variables”, UMB, 17:2 (2020), 171
Fedunyk-Yaremchuk V O., Hembars'ka S.B., “Estimates of Approximative Characteristics of the Classes B-P,Theta(Omega) of Periodic Functions of Several Variables With Given Majorant of Mixed Moduli of Continuity in the Space l-Q”, Carpathian Math. Publ., 11:2 (2019), 281–295
O. V. Fedunyk-Yaremchuk, K. V. Solich, “Estimates of approximative characteristics of the classes B p
,
θ Ω BΩp,θBΩp,θ
of periodic functions of many variables with given majorant of mixed continuity moduli in the space L
∞”, J Math Sci, 231:1 (2018), 28
Mykhailo V. Hembars'kyi, Svitlana B. Hembars'ka, “Widths of the classes B p
,
θ Ω BΩp,θBΩp,θ
of periodic functions of many variables in the space B1,1”, J Math Sci, 235:1 (2018), 35
Van Kien Nguyen, “Gelfand Numbers of Embeddings of Mixed Besov Spaces”, J. Complex., 41 (2017), 35–57
Romanyuk A.S., “Entropy Numbers and Widths For the Classes of Periodic Functions of Many Variables”, Ukr. Math. J., 68:10 (2017), 1620–1636
Byrenheid G., Ullrich T., “Optimal Sampling Recovery of Mixed Order Sobolev Embeddings Via Discrete Littlewood-Paley Type Characterizations”, Anal. Math., 43:2 (2017), 133–191
Romanyuk A.S., “Trigonometric and Linear Widths For the Classes of Periodic Multivariate Functions”, Ukr. Math. J., 69:5 (2017), 782–795
Dauren B. Bazarkhanov, Springer Proceedings in Mathematics & Statistics, 216, Functional Analysis in Interdisciplinary Applications, 2017, 32
Bazarkhanov D.B., “Fourier widths of some function classes associated with m–multiple Haar system”, INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016) (Almaty, Kazakhstan, 7–10 September 2016), AIP Conference Proceedings, 1759, ed. Ashyralyev A. Lukashov A., Amer Inst Physics, 2016, 020110
K. A. Bekmaganbetov, Ye. Toleugazy, “Order of the orthoprojection widths of the anisotropic Nikol'skii–Besov classes in the anisotropic Lorentz space”, Eurasian Math. J., 7:3 (2016), 8–16
Van Kien Nguyen, Sickel W., “Weyl Numbers of Embeddings of Tensor Product Besov Spaces”, J. Approx. Theory, 200 (2015), 170–220
A. F. Konograj, “Estimates of the Approximation Characteristics of the Classes BΩp,θBΩp,θ of Periodic Functions of Several Variables with Given Majorant of Mixed Moduli of Continuity”, Math. Notes, 95:5 (2014), 656–669