Processing math: 100%
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 2, Pages 229–251
DOI: https://doi.org/10.1070/SM2008v199n02ABEH003917
(Mi sm3663)
 

This article is cited in 2 scientific papers (total in 2 papers)

On non-trivial additive cocycles on the torus

A. V. Rozhdestvenskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We construct a family of functions f with zero mean on a multidimensional torus possessing a very high degree of smoothness, such that the equation
w(x+α)w(x)=f(x)
has no measurable solutions w for any badly approximable vector α. For every vector α admitting an arbitrary prescribed degree of simultaneous Diophantine approximation we construct a cocycle of extremal smoothness that is asymptotically normal in the strong sense.
Bibliography: 19 titles.
Received: 05.09.2006 and 13.09.2007
Bibliographic databases:
UDC: 517.518.4+517.987.5+517.983.5+519.21
MSC: Primary 37A20; Secondary 11K60
Language: English
Original paper language: Russian
Citation: A. V. Rozhdestvenskii, “On non-trivial additive cocycles on the torus”, Sb. Math., 199:2 (2008), 229–251
Citation in format AMSBIB
\Bibitem{Roz08}
\by A.~V.~Rozhdestvenskii
\paper On non-trivial additive cocycles on the torus
\jour Sb. Math.
\yr 2008
\vol 199
\issue 2
\pages 229--251
\mathnet{http://mi.mathnet.ru/eng/sm3663}
\crossref{https://doi.org/10.1070/SM2008v199n02ABEH003917}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2402199}
\zmath{https://zbmath.org/?q=an:1170.37005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255696300010}
\elib{https://elibrary.ru/item.asp?id=20359304}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44449137016}
Linking options:
  • https://www.mathnet.ru/eng/sm3663
  • https://doi.org/10.1070/SM2008v199n02ABEH003917
  • https://www.mathnet.ru/eng/sm/v199/i2/p71
  • This publication is cited in the following 2 articles:
    1. Cohen G., Lin M., “Joint and Double Coboundaries of Commuting Contractions”, Indiana Univ. Math. J., 70:4 (2021), 1355–1394  crossref  mathscinet  isi
    2. Goll M., Verbitskiy E., “Homoclinic Points of Principal Algebraic Actions”, Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, Lecture Notes in Applied Mathematics and Mechanics, 3, eds. Muntean A., Rademacher J., Zagaris A., Springer Int Publishing Ag, 2016, 251–292  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:574
    Russian version PDF:157
    English version PDF:32
    References:79
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025