Abstract:
Conditions ensuring that the factors of the Wiener–Hopf matrix factorization have finite semimultiplicative moments are described.
Bibliography: 10 titles.
\Bibitem{Sgi08}
\by M.~S.~Sgibnev
\paper Semimultiplicative moments of factors in Wiener--Hopf matrix factorization
\jour Sb. Math.
\yr 2008
\vol 199
\issue 2
\pages 277--290
\mathnet{http://mi.mathnet.ru/eng/sm2919}
\crossref{https://doi.org/10.1070/SM2008v199n02ABEH003919}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2402201}
\zmath{https://zbmath.org/?q=an:1165.47017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255696300012}
\elib{https://elibrary.ru/item.asp?id=20359306}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44449094110}
Linking options:
https://www.mathnet.ru/eng/sm2919
https://doi.org/10.1070/SM2008v199n02ABEH003919
https://www.mathnet.ru/eng/sm/v199/i2/p115
This publication is cited in the following 5 articles:
M. S. Sgibnev, “ASYMPTOTIC BEHAVIOR OF THE SOLUTION TO THE WIENER–HOPF EQUATION IN MEASURES”, J Math Sci, 2024
Mikhail Sgibnev, “The Wiener–Hopf Equation with Probability Kernel and Submultiplicative Asymptotics of the Inhomogeneous Term”, AppliedMath, 2:3 (2022), 501
M. S. Sgibnev, “Diskretnoe uravnenie Vinera–Khopfa s polumultiplikativnoi asimptotikoi resheniya”, Sib. elektron. matem. izv., 16 (2019), 1600–1611
Sgibnev M.S., “Wiener-Hopf Equation Whose Kernel Is a Probability Distribution”, Differ. Equ., 53:9 (2017), 1174–1196
M. S. Sgibnev, “On the inhomogeneous conservative Wiener–Hopf equation”, Siberian Math. J., 58:6 (2017), 1090–1103