Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1975, Volume 27, Issue 1, Pages 51–65
DOI: https://doi.org/10.1070/SM1975v027n01ABEH002498
(Mi sm3670)
 

This article is cited in 12 scientific papers (total in 12 papers)

On unitary representations of the group of diffeomorphisms of the space RnRn, n2

R. S. Ismagilov
References:
Abstract: In this paper, one considers representations of the group D0(Rn), defined as the connected component of the identity in the group of all finitary diffeomorphisms of Rn, n2, continuous with respect to natural convergence and containing a trivial subrepresentation of the subgroup D0(Rn), preserving volume in Rn. Under some additional assumptions there is a description of the irreducible unitary representations in Hilbert spaces. It is shown that each such representation is connected with some dynamical system by means of the standard construction of induced representations.
Bibliography: 5 titles.
Received: 20.11.1974
Bibliographic databases:
UDC: 513.88
MSC: Primary 22A25, 28A65; Secondary 58D05
Language: English
Original paper language: Russian
Citation: R. S. Ismagilov, “On unitary representations of the group of diffeomorphisms of the space Rn, n2”, Math. USSR-Sb., 27:1 (1975), 51–65
Citation in format AMSBIB
\Bibitem{Ism75}
\by R.~S.~Ismagilov
\paper On~unitary representations of the group of diffeomorphisms of the space $R^n$, $n\geqslant2$
\jour Math. USSR-Sb.
\yr 1975
\vol 27
\issue 1
\pages 51--65
\mathnet{http://mi.mathnet.ru/eng/sm3670}
\crossref{https://doi.org/10.1070/SM1975v027n01ABEH002498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=414795}
\zmath{https://zbmath.org/?q=an:0317.58008}
Linking options:
  • https://www.mathnet.ru/eng/sm3670
  • https://doi.org/10.1070/SM1975v027n01ABEH002498
  • https://www.mathnet.ru/eng/sm/v140/i1/p55
  • This publication is cited in the following 12 articles:
    1. M. I. Gozman, “Lineinye predstavleniya algebry Li gruppy diffeomorfizmov v prostranstve $\mathbb{R}^d$”, TMF, 223:1 (2025), 3–28  mathnet  crossref
    2. O.L. Rebenko, MATHEMATICAL FOUNDATIONS OF MODERN STATISTICAL MECHANICS, 2024  crossref
    3. V. V. Ryzhikov, “Weakly homoclinic groups of ergodic actions”, Trans. Moscow Math. Soc., 80 (2019), 83–94  mathnet  crossref  elib
    4. V. V. Ryzhikov, “Ergodic homoclinic groups, Sidon constructions and Poisson suspensions”, Trans. Moscow Math. Soc., 75 (2014), 77–85  mathnet  crossref  elib
    5. Dosovitskii A.A., “Quasi-Invariant Measures on Sets of Piecewise Smooth Homeomorphisms of Closed Intervals and Circles and Representations of Diffeomorphism Groups”, Russ. J. Math. Phys., 18:3 (2011), 258–296  crossref  mathscinet  zmath  isi  elib
    6. A. A. Dosovitskij, “Some Measures on the Set of Piecewise Smooth Circle Homeomorphisms and Related Representations of the Circle Diffeomorphism Group”, Math. Notes, 88:6 (2010), 898–901  mathnet  crossref  crossref  mathscinet  isi
    7. Pugachev, OV, “Quasi-invariance of Poisson distributions with respect to transformations of configurations”, Doklady Mathematics, 77:3 (2008), 420  crossref  mathscinet  zmath  isi  elib
    8. Goldin G., Moschella U., Sakuraba T., “Self-Similar Random Processes and Infinite-Dimensional Configuration Spaces”, Phys. Atom. Nuclei, 68:10 (2005), 1675–1684  crossref  mathscinet  adsnasa  isi
    9. Goldin G.A., Moschella U., Sakuraba T., “Measures on spaces of infinite-dimensional configurations, group representations, and statistical physics”, Lie Theory and Its Applications in Physics V, Proceedings, 2004, 313–326  crossref  mathscinet  isi
    10. Goldin G., “Lectures on Diffeomorphism Groups in Quantum Physics”, Proceedings of the Third International Workshop on Contemporary Problems in Mathematical Physics, eds. Govaerts J., Hounkonnou M., Msezane A., World Scientific Publ Co Pte Ltd, 2004, 3–93  crossref  mathscinet  zmath  isi
    11. S. ALBEVERIO, YU. G. KONDRATIEV, M. RÖCKNER, “DIFFEOMORPHISM GROUPS AND CURRENT ALGEBRAS: CONFIGURATION SPACE ANALYSIS IN QUANTUM THEORY”, Rev. Math. Phys, 11:01 (1999), 1  crossref  mathscinet  zmath
    12. Yu. A. Neretin, “On the correspondence between boson Fock space and the $L^2$ space with respect to Poisson measure”, Sb. Math., 188:11 (1997), 1587–1616  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:433
    Russian version PDF:125
    English version PDF:18
    References:91
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025