Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1975, Volume 27, Issue 1, Pages 39–50
DOI: https://doi.org/10.1070/SM1975v027n01ABEH002497
(Mi sm3669)
 

On the completeness of the exponential system in nonconvex domains

I. S. Galimov
References:
Abstract: Let $L(\lambda)=\sum_{j=1}^r A_je^{\lambda a_j}$, where $a_j$ ($1\leqslant j \leqslant r$) are the vertices of a convex polygon $\overline D$, and let $\{\lambda_\nu\}_{\nu=1}^\infty$ be the sequence of all of the zeros (which we assume to be simple) of $L(\lambda)$. Define $\Gamma\stackrel{\mathrm{df}}=\bigcup_{j=1}^r[0,a_j]$. For the system $\{e^{\lambda_\nu z}\}_{\nu=1}^\infty$, we construct a system of functions $\{\psi_\nu^*(z)\}_{\nu=1}^\infty$ which has the biorthogonality property on $\Gamma$.
With the aid of the system $\{\psi_\nu^*(z)\}_{\nu=1}^\infty$, we construct the Dirichlet series for a function $f(z)$ which is continuous on $\Gamma$. We prove the following uniqueness theorem: If all the coefficients of the series are zero, then $f(z)\equiv0$. It follows from this theorem that the system $\{\psi_\nu^*(z)\}_{\nu=1}^\infty$ is complete outside of $\Gamma$.
Bibliography: 3 titles.
Received: 07.10.1974
Bibliographic databases:
UDC: 517.53
MSC: Primary 30A16, 30A18; Secondary 30A62, 30A82
Language: English
Original paper language: Russian
Citation: I. S. Galimov, “On the completeness of the exponential system in nonconvex domains”, Math. USSR-Sb., 27:1 (1975), 39–50
Citation in format AMSBIB
\Bibitem{Gal75}
\by I.~S.~Galimov
\paper On~the completeness of the exponential system in nonconvex domains
\jour Math. USSR-Sb.
\yr 1975
\vol 27
\issue 1
\pages 39--50
\mathnet{http://mi.mathnet.ru//eng/sm3669}
\crossref{https://doi.org/10.1070/SM1975v027n01ABEH002497}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=393441}
\zmath{https://zbmath.org/?q=an:0323.30011}
Linking options:
  • https://www.mathnet.ru/eng/sm3669
  • https://doi.org/10.1070/SM1975v027n01ABEH002497
  • https://www.mathnet.ru/eng/sm/v140/i1/p42
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025