|
This article is cited in 1 scientific paper (total in 1 paper)
On the dimension theory of metrizable spaces with periodic homeomorphisms
S. A. Bogatyi, M. Madirimov
Abstract:
For every metric space $X$ with homeomorphism $a\colon X\to X$ of prime period $p$ ($a^p=e_X$) we construct a zero-dimensional metric space $P$ ($\dim P=0$) with homeomorphism $b\colon P\to P$ of the same period $p$, together with a closed mapping $f\colon P\to X$ onto $X$, commuting with $a$ and $b$, such that $\operatorname{Ord}f\leqslant \dim X+1$ if $X$ is finite-dimensional and $\operatorname{Ord}f<\infty$ if $X$ is countable-dimensional.
Bibliography: 12 titles.
Received: 22.11.1974
Citation:
S. A. Bogatyi, M. Madirimov, “On the dimension theory of metrizable spaces with periodic homeomorphisms”, Math. USSR-Sb., 27:1 (1975), 67–76
Linking options:
https://www.mathnet.ru/eng/sm3671https://doi.org/10.1070/SM1975v027n01ABEH002499 https://www.mathnet.ru/eng/sm/v140/i1/p72
|
|