Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1975, Volume 27, Issue 1, Pages 23–37
DOI: https://doi.org/10.1070/SM1975v027n01ABEH002496
(Mi sm3668)
 

This article is cited in 14 scientific papers (total in 14 papers)

Interpolation properties of $\varepsilon$-entropy and diameters. Geometric characteristics of imbedding for function spaces of Sobolev–Besov type

H. Triebel
References:
Abstract: In the paper the following problems are considered: 1) behavior of the geometric characteristics of compact operators on interpolation of abstract Banach spaces ($\varepsilon$-entropy, Kolmogorov and Gel'fand diameters); 2) evaluation or estimation of the order of $\varepsilon$-entropy and diameters for the unit ball of a function space of Sobolev–Besov type as a compact set in another function space of that type. The spaces under examination are nonweighted anisotropic spaces as well as nonweighted and weighted isotropic spaces.
Bibliography: 19 titles.
Received: 04.04.1973 and 24.06.1974
Bibliographic databases:
UDC: 513.88
MSC: 46E35
Language: English
Original paper language: Russian
Citation: H. Triebel, “Interpolation properties of $\varepsilon$-entropy and diameters. Geometric characteristics of imbedding for function spaces of Sobolev–Besov type”, Math. USSR-Sb., 27:1 (1975), 23–37
Citation in format AMSBIB
\Bibitem{Tri75}
\by H.~Triebel
\paper Interpolation properties of $\varepsilon$-entropy and diameters. Geometric charac\-teristics of imbedding for function spaces of Sobolev--Besov type
\jour Math. USSR-Sb.
\yr 1975
\vol 27
\issue 1
\pages 23--37
\mathnet{http://mi.mathnet.ru/eng/sm3668}
\crossref{https://doi.org/10.1070/SM1975v027n01ABEH002496}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=412801}
\zmath{https://zbmath.org/?q=an:0312.46043}
Linking options:
  • https://www.mathnet.ru/eng/sm3668
  • https://doi.org/10.1070/SM1975v027n01ABEH002496
  • https://www.mathnet.ru/eng/sm/v140/i1/p27
  • This publication is cited in the following 14 articles:
    1. A. A. Vasil'eva, “Kolmogorov widths of intersections of weighted Sobolev classes on an interval with conditions on the zeroth and first derivatives”, Izv. Math., 85:1 (2021), 1–23  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Vasil'eva A.A., “Kolmogorov Widths of Weighted Sobolev Classes on a Multi-Dimensional Domain With Conditions on the Derivatives of Order R and Zero”, J. Approx. Theory, 269 (2021), 105602  crossref  isi
    3. A. A. Vasil'eva, “Linear Widths of Weighted Sobolev Classes with Conditions on the Highest Order and Zero Derivatives”, Russ. J. Math. Phys., 27:4 (2020), 537  crossref
    4. R.L.B. Stabile, S.A. Tozoni, “Estimates for entropy numbers of sets of smooth functions on the torus Td”, Journal of Approximation Theory, 235 (2018), 92  crossref
    5. M. G. Nasyrova, E. P. Ushakova, “Hardy–Steklov operators and Sobolev-type embedding inequalities”, Proc. Steklov Inst. Math., 293 (2016), 228–254  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    6. Romanyuk A.S., “Estimation of the Entropy Numbers and Kolmogorov Widths for the Nikol'skii–Besov Classes of Periodic Functions of Many Variables”, Ukr. Math. J., 67:11 (2016), 1739–1757  crossref  mathscinet  zmath  isi
    7. Vasil'eva A.A., “Embedding Theorem for Weighted Sobolev Classes with Weights That Are Functions of the Distance to Some H-Set”, Russ. J. Math. Phys., 21:1 (2014), 112–122  crossref  mathscinet  zmath  isi
    8. Vasil'eva A.A., “Embedding Theorem for Weighted Sobolev Classes on a John Domain with Weights That Are Functions of the Distance to Some H-Set”, Russ. J. Math. Phys., 20:3 (2013), 360–373  crossref  mathscinet  zmath  isi
    9. A. K. Kushpel, J. Levesley, S. A. Tozoni, “Estimates of n -widths of Besov classes on two-point homogeneous manifolds”, Math Nachr, 282:5 (2009), 748  crossref  mathscinet  zmath  isi
    10. Yang Y., “Mixing Strategies for Density Estimation”, Ann. Stat., 28:1 (2000), 75–87  crossref  mathscinet  zmath  isi
    11. Yang Y., Barron A., “Information-Theoretic Determination of Minimax Rates of Convergence”, Ann. Stat., 27:5 (1999), 1564–1599  crossref  mathscinet  zmath  isi
    12. L. D. Kudryavtsev, S. M. Nikol'skiǐ, Encyclopaedia of Mathematical Sciences, 26, Analysis III, 1991, 1  crossref
    13. Carl B., “Entropy Numbers of Diagonal Operators with an Application to Eigenvalue Problems”, J. Approx. Theory, 32:2 (1981), 135–150  crossref  mathscinet  zmath  isi
    14. Carl B., “Entropy Numbers of Embedding Maps Between Besov-Spaces with an Application to Eigenvalue Problems”, Proc. R. Soc. Edinb. Sect. A-Math., 90:1-2 (1981), 63–70  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:568
    Russian version PDF:198
    English version PDF:26
    References:89
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025