Abstract:
This paper considers the action of the operator $a\bigl(x_1-ih\frac\partial{\partial x}\bigr)u\overset{\mathrm{def}}=\int a(x,h\xi)\times\exp i(x\xi)\widetilde u(\xi)\,d\xi$ on functions of the form $\exp(\frac{iS}h)\varphi(x)=u(x)$, where $\varphi\in C_0^\infty(\mathbf R^n)$ and $S\in C^\infty(\mathbf R^n)$. In particular, when $ S(x,h)=S(x)$, $\operatorname{im}S(x)\geqslant0$, one has
$$
a\biggl(x_1-ih\frac\partial{\partial x}\biggr)\exp\biggl(-\frac{iS}h\biggr)\varphi=\exp\biggl(\frac{iS}h\biggr)\sum_{j=0}^N h^jL_j\varphi+O(h^{N+1}).
$$
It is proved that for $\operatorname{im}S\not\equiv0$ the differential operators $L_j$ can be obtained from the analogous differential operators for $\operatorname{im}S\equiv0$ by means of “almost analytic extension” with respect to the arguments $S',S'',\dots,S^{(k)}$.
Bibliography: 12 titles.
Citation:
V. V. Kucherenko, “The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case”, Math. USSR-Sb., 23:1 (1974), 85–109
\Bibitem{Kuc74}
\by V.~V.~Kucherenko
\paper The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case
\jour Math. USSR-Sb.
\yr 1974
\vol 23
\issue 1
\pages 85--109
\mathnet{http://mi.mathnet.ru/eng/sm3634}
\crossref{https://doi.org/10.1070/SM1974v023n01ABEH002174}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=343104}
\zmath{https://zbmath.org/?q=an:0293.35061}
Linking options:
https://www.mathnet.ru/eng/sm3634
https://doi.org/10.1070/SM1974v023n01ABEH002174
https://www.mathnet.ru/eng/sm/v136/i1/p89
This publication is cited in the following 5 articles:
Panos D Karageorge, George N Makrakis, “Asymptotic approximations for the phase space Schrödinger equation”, J. Phys. A: Math. Theor., 55:34 (2022), 345201
M. V. Karasev, V. P. Maslov, “Asymptotic and geometric quantization”, Russian Math. Surveys, 39:6 (1984), 133–205
M. V. Karasev, V. E. Nazaikinskii, “On the quantization of rapidly oscillating symbols”, Math. USSR-Sb., 34:6 (1978), 737–764
Leonid S. Frank, “General boundary value problems for ordinary differential equations with small parameter”, Annali di Matematica, 114:1 (1977), 27
V. V. Kucherenko, “Asymptotic solutions of equations with complex characteristics”, Math. USSR-Sb., 24:2 (1974), 159–207