Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1974, Volume 23, Issue 1, Pages 85–109
DOI: https://doi.org/10.1070/SM1974v023n01ABEH002174
(Mi sm3634)
 

This article is cited in 5 scientific papers (total in 5 papers)

The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case

V. V. Kucherenko
References:
Abstract: This paper considers the action of the operator $a\bigl(x_1-ih\frac\partial{\partial x}\bigr)u\overset{\mathrm{def}}=\int a(x,h\xi)\times\exp i(x\xi)\widetilde u(\xi)\,d\xi$ on functions of the form $\exp(\frac{iS}h)\varphi(x)=u(x)$, where $\varphi\in C_0^\infty(\mathbf R^n)$ and $S\in C^\infty(\mathbf R^n)$. In particular, when $ S(x,h)=S(x)$, $\operatorname{im}S(x)\geqslant0$, one has
$$ a\biggl(x_1-ih\frac\partial{\partial x}\biggr)\exp\biggl(-\frac{iS}h\biggr)\varphi=\exp\biggl(\frac{iS}h\biggr)\sum_{j=0}^N h^jL_j\varphi+O(h^{N+1}). $$
It is proved that for $\operatorname{im}S\not\equiv0$ the differential operators $L_j$ can be obtained from the analogous differential operators for $\operatorname{im}S\equiv0$ by means of “almost analytic extension” with respect to the arguments $S',S'',\dots,S^{(k)}$.
Bibliography: 12 titles.
Received: 07.06.1973
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1974, Volume 94(136), Number 1(5), Pages 89–113
Bibliographic databases:
UDC: 517.43
MSC: Primary 35S05, 47G05; Secondary 35J10
Language: English
Original paper language: Russian
Citation: V. V. Kucherenko, “The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case”, Mat. Sb. (N.S.), 94(136):1(5) (1974), 89–113; Math. USSR-Sb., 23:1 (1974), 85–109
Citation in format AMSBIB
\Bibitem{Kuc74}
\by V.~V.~Kucherenko
\paper The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case
\jour Mat. Sb. (N.S.)
\yr 1974
\vol 94(136)
\issue 1(5)
\pages 89--113
\mathnet{http://mi.mathnet.ru/sm3634}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=343104}
\zmath{https://zbmath.org/?q=an:0293.35061}
\transl
\jour Math. USSR-Sb.
\yr 1974
\vol 23
\issue 1
\pages 85--109
\crossref{https://doi.org/10.1070/SM1974v023n01ABEH002174}
Linking options:
  • https://www.mathnet.ru/eng/sm3634
  • https://doi.org/10.1070/SM1974v023n01ABEH002174
  • https://www.mathnet.ru/eng/sm/v136/i1/p89
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:441
    Russian version PDF:286
    English version PDF:23
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024