Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1974, Volume 23, Issue 1, Pages 85–109
DOI: https://doi.org/10.1070/SM1974v023n01ABEH002174
(Mi sm3634)
 

This article is cited in 5 scientific papers (total in 5 papers)

The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case

V. V. Kucherenko
References:
Abstract: This paper considers the action of the operator $a\bigl(x_1-ih\frac\partial{\partial x}\bigr)u\overset{\mathrm{def}}=\int a(x,h\xi)\times\exp i(x\xi)\widetilde u(\xi)\,d\xi$ on functions of the form $\exp(\frac{iS}h)\varphi(x)=u(x)$, where $\varphi\in C_0^\infty(\mathbf R^n)$ and $S\in C^\infty(\mathbf R^n)$. In particular, when $ S(x,h)=S(x)$, $\operatorname{im}S(x)\geqslant0$, one has
$$ a\biggl(x_1-ih\frac\partial{\partial x}\biggr)\exp\biggl(-\frac{iS}h\biggr)\varphi=\exp\biggl(\frac{iS}h\biggr)\sum_{j=0}^N h^jL_j\varphi+O(h^{N+1}). $$
It is proved that for $\operatorname{im}S\not\equiv0$ the differential operators $L_j$ can be obtained from the analogous differential operators for $\operatorname{im}S\equiv0$ by means of “almost analytic extension” with respect to the arguments $S',S'',\dots,S^{(k)}$.
Bibliography: 12 titles.
Received: 07.06.1973
Bibliographic databases:
UDC: 517.43
MSC: Primary 35S05, 47G05; Secondary 35J10
Language: English
Original paper language: Russian
Citation: V. V. Kucherenko, “The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case”, Math. USSR-Sb., 23:1 (1974), 85–109
Citation in format AMSBIB
\Bibitem{Kuc74}
\by V.~V.~Kucherenko
\paper The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case
\jour Math. USSR-Sb.
\yr 1974
\vol 23
\issue 1
\pages 85--109
\mathnet{http://mi.mathnet.ru/eng/sm3634}
\crossref{https://doi.org/10.1070/SM1974v023n01ABEH002174}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=343104}
\zmath{https://zbmath.org/?q=an:0293.35061}
Linking options:
  • https://www.mathnet.ru/eng/sm3634
  • https://doi.org/10.1070/SM1974v023n01ABEH002174
  • https://www.mathnet.ru/eng/sm/v136/i1/p89
  • This publication is cited in the following 5 articles:
    1. Panos D Karageorge, George N Makrakis, “Asymptotic approximations for the phase space Schrödinger equation”, J. Phys. A: Math. Theor., 55:34 (2022), 345201  crossref
    2. M. V. Karasev, V. P. Maslov, “Asymptotic and geometric quantization”, Russian Math. Surveys, 39:6 (1984), 133–205  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. M. V. Karasev, V. E. Nazaikinskii, “On the quantization of rapidly oscillating symbols”, Math. USSR-Sb., 34:6 (1978), 737–764  mathnet  crossref  mathscinet  zmath
    4. Leonid S. Frank, “General boundary value problems for ordinary differential equations with small parameter”, Annali di Matematica, 114:1 (1977), 27  crossref
    5. V. V. Kucherenko, “Asymptotic solutions of equations with complex characteristics”, Math. USSR-Sb., 24:2 (1974), 159–207  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:480
    Russian version PDF:291
    English version PDF:29
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025