Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1974, Volume 23, Issue 1, Pages 69–83
DOI: https://doi.org/10.1070/SM1974v023n01ABEH001714
(Mi sm3633)
 

Proof of convergence in the problem of rectification

G. A. Gal'perin
References:
Abstract: The behavior of the vertices $A_1(t),\dots,A_n(t)$ of a polygonal line $\mathbf A(t)$ situated in $k$-dimensional Euclidean space is considered as $t\to\infty$ (each point $A_i(t\pm1)$, $1<i<n$, is a linear combination of the points $A_{i-1}(t)$, $A_i(t)$ and $A_{i+1}(t)$; the points $A_1(t+1)$ and $A_n(t+1)$ are linear combinations of $A_1(t)$ and $A_2(t)$, and $A_{n-1}(t)$ and $A_n(t)$, respectively). It is proved that for any initial position $\mathbf A(0)$ the polygonal lines $\mathbf A(t)$ converge to one of two possible limits, namely a stationary or quasistationary polygonal line.
Figures: 1.
Bibliography: 2 titles.
Received: 22.05.1973
Bibliographic databases:
UDC: 513.7
MSC: 50B30, 92A05
Language: English
Original paper language: Russian
Citation: G. A. Gal'perin, “Proof of convergence in the problem of rectification”, Math. USSR-Sb., 23:1 (1974), 69–83
Citation in format AMSBIB
\Bibitem{Gal74}
\by G.~A.~Gal'perin
\paper Proof of convergence in the problem of rectification
\jour Math. USSR-Sb.
\yr 1974
\vol 23
\issue 1
\pages 69--83
\mathnet{http://mi.mathnet.ru//eng/sm3633}
\crossref{https://doi.org/10.1070/SM1974v023n01ABEH001714}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=351497}
\zmath{https://zbmath.org/?q=an:0305.50004}
Linking options:
  • https://www.mathnet.ru/eng/sm3633
  • https://doi.org/10.1070/SM1974v023n01ABEH001714
  • https://www.mathnet.ru/eng/sm/v136/i1/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:291
    Russian version PDF:102
    English version PDF:7
    References:62
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024