Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 11, Issue 1, Pages 1–24
DOI: https://doi.org/10.1070/SM1970v011n01ABEH002060
(Mi sm3432)
 

This article is cited in 21 scientific papers (total in 21 papers)

Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients

M. A. Evgrafov, M. M. Postnikov
References:
Abstract: The form P(ξ)=|p|=2map(2mp)ξp of order 2m>0, which is a function of the n variables ξ1,,ξn, where p=(p1,,pn), |p|=p1++pn, ξp=ξp11ξpnn and (2mp)=(2m)!p1!pn!, is called strongly convex if the quadratic form |m|=|n|=mam+nXmXn (in a space of dimension equal to the number of the multi-indices m with |m|=m) is positive definite. All even-order differentials of a strongly convex form are positive definite forms.
The paper considers the parabolic equation ut+P(1ix)u=0, with a characteristic form P(ξ) which is strongly convex, and the asymptotic behavior of its Green's function for t+0 is derived. It is an unexpected property that this asymptotic behavior is dependent not on all saddle points of the corresponding integral with ReP<0, but only on some of these. (This effect has not been observed for the previously known cases, with n=1 or m=1.)
The asymptotic behavior of the Green's function (for λ+) is derived also for the corresponding elliptic equation P(1ix)u+λu=0. It is suggested that analogous results hold for all convex forms P(ξ), i.e. all forms having a positive definite second differential.
Bibliography: 4 titles.
Received: 11.12.1969
Bibliographic databases:
UDC: 517.947
Language: English
Original paper language: Russian
Citation: M. A. Evgrafov, M. M. Postnikov, “Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients”, Math. USSR-Sb., 11:1 (1970), 1–24
Citation in format AMSBIB
\Bibitem{EvgPos70}
\by M.~A.~Evgrafov, M.~M.~Postnikov
\paper Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients
\jour Math. USSR-Sb.
\yr 1970
\vol 11
\issue 1
\pages 1--24
\mathnet{http://mi.mathnet.ru/eng/sm3432}
\crossref{https://doi.org/10.1070/SM1970v011n01ABEH002060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=273206}
\zmath{https://zbmath.org/?q=an:0233.35011}
Linking options:
  • https://www.mathnet.ru/eng/sm3432
  • https://doi.org/10.1070/SM1970v011n01ABEH002060
  • https://www.mathnet.ru/eng/sm/v124/i1/p3
  • This publication is cited in the following 21 articles:
    1. Evan Randles, Laurent Saloff-Coste, “On-diagonal asymptotics for heat kernels of a class of inhomogeneous partial differential operators”, Journal of Differential Equations, 363 (2023), 67  crossref
    2. Davide Addona, Federica Gregorio, Abdelaziz Rhandi, Cristian Tacelli, “Bi-Kolmogorov type operators and weighted Rellich's inequalities”, Nonlinear Differ. Equ. Appl., 29:2 (2022)  crossref
    3. Gerassimos Barbatis, Panagiotis Branikas, “Heat kernel estimates for fourth-order non-uniformly elliptic operators with non-strongly convex symbols”, ejde, 2022:01-87 (2022), 76  crossref
    4. Markus Gross, Christian M. Rohwer, S. Dietrich, “Dynamics of the critical Casimir force for a conserved order parameter after a critical quench”, Phys. Rev. E, 100:1 (2019)  crossref
    5. G. Barbatis, P. Branikas, “On the heat kernel of a class of fourth order operators in two dimensions: Sharp Gaussian estimates and short time asymptotics”, Journal of Differential Equations, 265:10 (2018), 5237  crossref
    6. Stanislav A. Stepin, Geometric Methods in Physics, 2013, 415  crossref
    7. S. A. Stepin, “Asymptotic estimates for the kernel of the semigroup generated by a perturbation of the biharmonic operator by a potential”, Sb. Math., 203:6 (2012), 893–921  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. S. A. Stepin, “Kernel estimates and the regularized trace of the semigroup generated by a potential perturbation of the bi-Laplacian”, Russian Math. Surveys, 66:3 (2011), 635–636  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. M. M. Postnikov, “On the Asymptotics of the Green Functions for Parabolic Equations”, Proc. Steklov Inst. Math., 236 (2002), 260–272  mathnet  mathscinet  zmath
    10. G Barbatis, “Explicit Estimates on the Fundamental Solution of Higher-Order Parabolic Equations with Measurable Coefficients”, Journal of Differential Equations, 174:2 (2001), 442  crossref  mathscinet  zmath
    11. G. Barbatis, “On the approximation of Finsler metrics on Euclidean domains”, Proc Edin Math Soc, 42:3 (1999), 589  crossref  mathscinet  zmath
    12. Gerassimos Barbatis, “Spectral Theory of Singular Elliptic Operators with Measurable Coefficients”, Journal of Functional Analysis, 155:1 (1998), 125  crossref  mathscinet  zmath
    13. Marc A. Berger, Alan D. Sloan, “Product formulas for semigroups with elliptic generators”, Journal of Functional Analysis, 57:3 (1984), 244  crossref  mathscinet  zmath
    14. Kyril Tintarew, “Short time asymptotics for fundamental solutions of higher order parabolic equation”, Communications in Partial Differential Equations, 7:4 (1982), 371  crossref  mathscinet  zmath
    15. M. A. Evgrafov, “Estimates of the fundamental solution of a parabolic equation”, Math. USSR-Sb., 40:3 (1981), 305–324  mathnet  crossref  mathscinet  zmath  isi
    16. B. V. Moshchinskii, V. K. Fedyanin, “Asymptotic behavior of the Heisenberg model with long-range interaction”, Theoret. and Math. Phys., 31:1 (1977), 345–349  mathnet  crossref
    17. B. V. Moshchinskii, V. K. Fedyanin, “Asymptotic behavior of Dicke's model”, Theoret. and Math. Phys., 32:1 (1977), 620–623  mathnet  crossref
    18. S. G. Gindikin, M. V. Fedoryuk, “Saddle points of parabolic polynomials”, Math. USSR-Sb., 23:3 (1974), 362–381  mathnet  crossref  mathscinet  zmath
    19. S. G. Gindikin, M. V. Fedoryuk, “Asimptotika fundamentalnogo resheniya parabolicheskogo uravneniya s postoyannymi koeffitsientami”, UMN, 28:1(169) (1973), 235–236  mathnet  mathscinet  zmath
    20. S. G. Gindikin, M. V. Fedoryuk, “Asymptotics of the fundamental solution of a Petrovskii parabolic equation with constant coefficients”, Math. USSR-Sb., 20:4 (1973), 519–542  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:923
    Russian version PDF:322
    English version PDF:33
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025