Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 11, Issue 1, Pages 1–24
DOI: https://doi.org/10.1070/SM1970v011n01ABEH002060
(Mi sm3432)
 

This article is cited in 21 scientific papers (total in 21 papers)

Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients

M. A. Evgrafov, M. M. Postnikov
References:
Abstract: The form $P(\xi)=\sum_{|\mathfrak p|=2m}a_\mathfrak p\binom{2m}{\mathfrak p}\xi^\mathfrak p$ of order $2m>0$, which is a function of the $n$ variables $\xi_1,\dots,\xi_n$, where $\mathfrak p=(p_1,\dots,p_n)$, $|\mathfrak p|=p_1+\dots+p_n$, $\xi^\mathfrak p=\xi_1^{p_1}\cdots\xi_n^{p_n}$ and $\binom{2m}{\mathfrak p}=\frac{(2m)!}{p_1!\cdots p_n!}$, is called strongly convex if the quadratic form $\sum_{|\mathfrak m|=|\mathfrak n|=m}a_{\mathfrak m+\mathfrak n}\mathrm X_\mathfrak m\mathrm X_\mathfrak n$ (in a space of dimension equal to the number of the multi-indices $\mathfrak m$ with $|\mathfrak m|=m$) is positive definite. All even-order differentials of a strongly convex form are positive definite forms.
The paper considers the parabolic equation $\frac{\partial u}{\partial t}+P\bigl(\frac1i\frac\partial{\partial x}\bigr)u=0$, with a characteristic form $P(\xi)$ which is strongly convex, and the asymptotic behavior of its Green's function for $t\to+0$ is derived. It is an unexpected property that this asymptotic behavior is dependent not on all saddle points of the corresponding integral with $\operatorname{Re}P<0$, but only on some of these. (This effect has not been observed for the previously known cases, with $n=1$ or $m=1$.)
The asymptotic behavior of the Green's function (for $\lambda\to+\infty$) is derived also for the corresponding elliptic equation $P\bigl(\frac1i\frac\partial{\partial x}\bigr)u+\lambda u=0$. It is suggested that analogous results hold for all convex forms $P(\xi)$, i.e. all forms having a positive definite second differential.
Bibliography: 4 titles.
Received: 11.12.1969
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1970, Volume 82(124), Number 1(5), Pages 3–29
Bibliographic databases:
UDC: 517.947
Language: English
Original paper language: Russian
Citation: M. A. Evgrafov, M. M. Postnikov, “Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients”, Mat. Sb. (N.S.), 82(124):1(5) (1970), 3–29; Math. USSR-Sb., 11:1 (1970), 1–24
Citation in format AMSBIB
\Bibitem{EvgPos70}
\by M.~A.~Evgrafov, M.~M.~Postnikov
\paper Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients
\jour Mat. Sb. (N.S.)
\yr 1970
\vol 82(124)
\issue 1(5)
\pages 3--29
\mathnet{http://mi.mathnet.ru/sm3432}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=273206}
\zmath{https://zbmath.org/?q=an:0233.35011}
\transl
\jour Math. USSR-Sb.
\yr 1970
\vol 11
\issue 1
\pages 1--24
\crossref{https://doi.org/10.1070/SM1970v011n01ABEH002060}
Linking options:
  • https://www.mathnet.ru/eng/sm3432
  • https://doi.org/10.1070/SM1970v011n01ABEH002060
  • https://www.mathnet.ru/eng/sm/v124/i1/p3
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:837
    Russian version PDF:306
    English version PDF:12
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024