Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 11, Issue 1, Pages 25–45
DOI: https://doi.org/10.1070/SM1970v011n01ABEH002061
(Mi sm3433)
 

A generalized Carleman boundary value problem

G. S. Litvinchuk, A. P. Nechaev
References:
Abstract: In a finite simply connected domain $D^+$ with a Lyapunov boundary $L$ there is considered the following boundary value problem: to find a function $\Phi^+(z)$ analytic in $D^+$ and $H$-continuous in $D^++L$, according to the boundary condition
\begin{equation} \Phi^+[\alpha(t)]=a(t)\Phi^+(t)+b(t)\overline{\Phi^+(t)}+h(t), \end{equation}
where $\alpha(t)$ homeomorphically maps $L$ on itself with the preservation $(\alpha=\alpha_+(t))$ or with the change $(\alpha=\alpha_-(t))$ of the direction of the circuit on $L$; $\alpha[\alpha(t)]\equiv t$; $\alpha'(t)\ne0$, $\alpha'(t)\in H(L)$; the functions $a(t),b(t),h(t)\in H(L)$ satisfy the identities
\begin{gather*} a(t)a[\alpha(t)]+b(t)\overline{b[\alpha(t)]}=1,\\ a(t)b[\alpha(t)]+\overline{a[\alpha(t)]}b(t)=0,\\ a(t)h[\alpha(t)]+b(t)\overline{h[\alpha(t)]}+h(t)=0. \end{gather*}

The Noether theory of problem (1) is constructed, its index is calculated and theorems of its solvability and stability are proved. An investigation of the problem in the case when $\alpha=\alpha_-(t)$ and $|a(t)|>|b(t)|$ is presented. From it there follows when $b(t)\equiv 0$ the known solvability theory of the Carleman problem.
Bibliography: 10 titles.
Received: 28.10.1968
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1970, Volume 82(124), Number 1(5), Pages 30–54
Bibliographic databases:
UDC: 517.53+517.948
Language: English
Original paper language: Russian
Citation: G. S. Litvinchuk, A. P. Nechaev, “A generalized Carleman boundary value problem”, Mat. Sb. (N.S.), 82(124):1(5) (1970), 30–54; Math. USSR-Sb., 11:1 (1970), 25–45
Citation in format AMSBIB
\Bibitem{LitNec70}
\by G.~S.~Litvinchuk, A.~P.~Nechaev
\paper A~generalized Carleman boundary value problem
\jour Mat. Sb. (N.S.)
\yr 1970
\vol 82(124)
\issue 1(5)
\pages 30--54
\mathnet{http://mi.mathnet.ru/sm3433}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=262518}
\zmath{https://zbmath.org/?q=an:0205.40502|0216.15303}
\transl
\jour Math. USSR-Sb.
\yr 1970
\vol 11
\issue 1
\pages 25--45
\crossref{https://doi.org/10.1070/SM1970v011n01ABEH002061}
Linking options:
  • https://www.mathnet.ru/eng/sm3433
  • https://doi.org/10.1070/SM1970v011n01ABEH002061
  • https://www.mathnet.ru/eng/sm/v124/i1/p30
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:385
    Russian version PDF:109
    English version PDF:11
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024