Abstract:
The principal result of the present work consists in the proof that an intersection of quadrics passing through a canonical curve is a reduced variety. The possible cases when the intersection of quadrics does not coincide with the curve itself are also examined in this article.
Figures: 1.
Bibliography: 8 titles.
This publication is cited in the following 18 articles:
Bruno Dewer, “Extensions of Gorenstein weighted projective 3-spaces and characterization of the primitive curves of their surface sections”, Math. Z., 309:4 (2025)
Yu. G. Prokhorov, “Trekhmernye mnogoobraziya Fano”, Lekts. kursy NOTs, 31, MIAN, M., 2022, 3–154
Juan Migliore, Uwe Nagel, “Gorenstein algebras presented by quadrics”, Collect. Math, 64:2 (2013), 211
PIETRO DE POI, FRANCESCO ZUCCONI, “FERMAT HYPERSURFACES AND SUBCANONICAL CURVES”, Int. J. Math, 22:12 (2011), 1763
V. V. Przyjalkowski, I. A. Cheltsov, K. A. Shramov, “Hyperelliptic and trigonal Fano threefolds”, Izv. Math., 69:2 (2005), 365–421
C. G. Madonna, V. V. Nikulin, “On a Classical Correspondence between K3 Surfaces”, Proc. Steklov Inst. Math., 241 (2003), 120–153
Nguyen Khac Viet, M. Saito, “On Mordell–Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity”, Izv. Math., 66:4 (2002), 789–805
David Eisenbud, Sorin Popescu, “The Projective Geometry of the Gale Transform”, Journal of Algebra, 230:1 (2000), 127
I. A. Cheltsov, “Bounded three-dimensional Fano varieties of integer index”, Math. Notes, 66:3 (1999), 360–365
V. D. Belousov, V. E. Plisko, E. B. Yanovskaya, D. D. Sokolov, S. Yu. Maslov, A. A. Bukhshtab, V. I. Nechaev, V. M. Paskonov, V. A. Artamonov, A. V. Prokhorov, N. V. Efimov, B. V. Khvedelidze, I. V. Dolgachev, V. A. Iskovskikh, A. B. Ivanov, V. T. Bazylev, A. V. Arkhangel'skiǐ, A. A. Sapozhenko, P. S. Saltan, P. S. Soltan, V. A. Chuyanov, M. Sh. Farber, S. V. Shvedenko, V. P. Petrenko, I. P. Mysovskikh, V. A. Trenogin, M. K. Samarin, Yu. A. Kuznetsov, E. D. Solomentsev, M. S. Nikulin, L. D. Kudryavtsev, V. N. Latyshev, D. V. Anosov, A. L. Shmel'kin, L. N. Shevrin, L. V. Kuz'min, V. L. Popov, D. V. Alekseevskiǐ, V. N. Remeslennikov, P. L. Dobrushin, V. V. Prelov, G. S. Khovanskiǐ, A. L. Onishchik, A. K. Tolpygo, L. A. Sidorov, L. A. Bokut', A. Ya. Kiruta, E. A. Palyutin, A. D. Taǐmanov, E. I. Vilkas, V. V. Rumyantsev, E. G. D'yakonov, A. F. Shapkin, L. E. Evtushik, V. I. Sobolev, V. M. Starszhinskiǐ, S. J. Pokhozhaev, V. G. Karmanov, Encyclopaedia of Mathematics, 1995, 67
M. Hazewinkel, Encyclopaedia of Mathematics, 1990, 361
Dolgachev I. Ortland D., “Point Sets in Projective Spaces and Theta Functions”, Asterisque, 1988, no. 165, 1–210
V. V. Shokurov, “Prym varieties: theory and applications”, Math. USSR-Izv., 23:1 (1984), 83–147
Masaaki Homma, “Theorem of Enriques-Petri type for a very ample invertible sheaf on a curve of genus three”, Math Z, 183:3 (1983), 343
Robert Treger, “On equations defining arithmetically Cohen-Macaulay schemes, II”, Duke Math. J., 48:1 (1981)
V. A. Iskovskikh, “Fano 3-folds. II”, Math. USSR-Izv., 12:3 (1978), 469–506
V. A. Iskovskikh, “Fano 3-folds. I”, Math. USSR-Izv., 11:3 (1977), 485–527
V. V. Nikulin, “An analogue of the Torelli theorem for Kummer surfaces of Jacobians”, Math. USSR-Izv., 8:1 (1974), 21–41